Atmos. Chem. Phys. Discuss., 12, 25487-25549, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study
P. Stier1, N. A. J. Schutgens1, H. Bian2,3, O. Boucher4, M. Chin5, S. Ghan6, N. Huneeus4, S. Kinne7, G. Lin8, G. Myhre9, J. E. Penner8, C. Randles3,10, B. Samset9, M. Schulz11, H. Yu3,5, and C. Zhou8
1Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
2University of Maryland, Baltimore, USA
3NASA Goddard Space Flight Center, Greenbelt, USA
4Laboratoire de Météorologie Dynamique, IPSL, CNRS/UPMC, Paris, France
5University of Maryland, College Park, USA
6Pacific Northwest National Laboratory, Richland, USA
7Max Planck Institute for Meteorology, Hamburg, Germany
8Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, USA
9Center for International Climate and Environmental Research Oslo – (CICERO), Oslo, Norway
10GESTAR/Morgan State University, Baltimore, Maryland, USA
11Norwegian Meteorological Institute, Oslo, Norway

Abstract. Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models.

Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.51 W m−2 and the inter-model standard deviation is 0.70 W m−2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m−2, and the standard deviation increases to 1.21 W m−2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky.

Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m−2 in the AeroCom Direct Radiative Effect experiment.

Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

Citation: Stier, P., Schutgens, N. A. J., Bian, H., Boucher, O., Chin, M., Ghan, S., Huneeus, N., Kinne, S., Lin, G., Myhre, G., Penner, J. E., Randles, C., Samset, B., Schulz, M., Yu, H., and Zhou, C.: Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study, Atmos. Chem. Phys. Discuss., 12, 25487-25549, doi:10.5194/acpd-12-25487-2012, 2012.
Search ACPD
Discussion Paper
    Final Revised Paper