Atmos. Chem. Phys. Discuss., 12, 25329-25353, 2012
www.atmos-chem-phys-discuss.net/12/25329/2012/
doi:10.5194/acpd-12-25329-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
On the isotopic fingerprint exerted on carbonyl sulfide by the stratosphere
J. A. Schmidt1, S. Hattori2, N. Yoshida2,3, S. Nanbu4, M. S. Johnson1, and R. Schinke5
1Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
2Department of Environmental Science and Technology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
3Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
4Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554, Japan
5Max-Planck-Institut für Dynamik und Selbstorganisation, 37073 Göttingen, Germany

Abstract. The isotopic fractionation in OCS photolysis is studied theoretically from first principles. UV absorption cross sections for OCS, OC33S, OC34S, OC36S and O13CS are calculated using the time-depedent quantum mechanical formalism and recent potential energy surfaces for the lowest four singlet and lowest four triplet electronic states. The calculated isotopic fractionations as a function of wavelength are in good agreement with recent measurements by Hattori et al. (2011) and indicate that photolysis leads to only a small enrichment of 34S in the remaining pool of OCS. A simple stratospheric model is constructed taking into account the main stratospheric sink reactions of OCS and it is found that stratospheric removal overall slightly favors light OCS in constrast to the findings of Leung et al. (2002). These results show, based on isotopic considerations, that OCS is an acceptable source of background stratosperic sulfate aerosol in agreement with a recent model study of Brühl et al. (2012). The 13C isotopic fractionation due to photolysis of OCS is significant and will leave a strong signal in the pool of remaining OCS making it a candidate for tracing using the ACE-FTS and MIPAS data sets.

Citation: Schmidt, J. A., Hattori, S., Yoshida, N., Nanbu, S., Johnson, M. S., and Schinke, R.: On the isotopic fingerprint exerted on carbonyl sulfide by the stratosphere, Atmos. Chem. Phys. Discuss., 12, 25329-25353, doi:10.5194/acpd-12-25329-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share