Atmos. Chem. Phys. Discuss., 12, 23793-23828, 2012
www.atmos-chem-phys-discuss.net/12/23793/2012/
doi:10.5194/acpd-12-23793-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Could aerosol emissions be used for regional heat wave mitigation?
D. N. Bernstein1,2, J. D. Neelin2, Q. B. Li2, and D. Chen2
1Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
2Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095, USA

Abstract. Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here adaptation to a potential regional scale application to offset the impacts of heat waves is critically examined. The effect of regional scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem) is used to quantify potential reductions in surface temperature as a function of emission rates in the lower stratosphere. Over the range considered, afternoon temperature reductions scale almost linearly with injections. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution) over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design trade-offs differ from global applications and the size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional scale application is thus consistent with global model evaluations emphasizing that mitigation via reduction of fossil fuels remains preferable to considering geoengineering with sulfate aerosols.

Citation: Bernstein, D. N., Neelin, J. D., Li, Q. B., and Chen, D.: Could aerosol emissions be used for regional heat wave mitigation?, Atmos. Chem. Phys. Discuss., 12, 23793-23828, doi:10.5194/acpd-12-23793-2012, 2012.
 
Search ACPD
Discussion Paper
XML
Citation
Final Revised Paper
Share