Atmos. Chem. Phys. Discuss., 12, 23135-23193, 2012
www.atmos-chem-phys-discuss.net/12/23135/2012/
doi:10.5194/acpd-12-23135-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Karlsruher Institut für Technologie, Institut für Meteorologie und Klimaforschung (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany

Abstract. The powerful backscatter lidar at Garmisch-Partenkirchen (Germany) has almost continually delivered backscatter coefficients of the stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt. Pinatubo (Philippines, 1991). The volcanic aerosol disappears within about five years, the removal from the stratosphere being modulated by the phase of the quasi-biennial oscillation. Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa or Boulder. This suggests being careful with invoking Asian air pollution as the main source as found in the literature. Rather an impact of previously missed volcanic eruptions on the stratospheric aerosol must be taken into consideration. A key observation in this regard was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash next to the source was reported just as roughly 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.5 km. Our analysis suggests for two, perhaps three, of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, contrasting the strongly descending lower layers entering Central Europe. The backscatter coefficients within the first 2 km above the tropopause exceed the stratospheric background by a factor of three to four. In addition, Asian and Saharan dust layers were identified in the free troposphere, Asian dust most likely even in the stratosphere. The number of minor mid-latitude eruptions has gradually increased during the past ten years. We conclude that, although their stratospheric contribution could not be clearly identified above our site they can sum up for forming some minor background. Clear stratospheric signatures were only seen in the case of eruptions reaching higher altitudes.

Citation: Trickl, T., Giehl, H., Jäger, H., and Vogelmann, H.: 35 years of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond, Atmos. Chem. Phys. Discuss., 12, 23135-23193, doi:10.5194/acpd-12-23135-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share