Atmos. Chem. Phys. Discuss., 12, 21437-21479, 2012
www.atmos-chem-phys-discuss.net/12/21437/2012/
doi:10.5194/acpd-12-21437-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model
N. Bellouin1, G. W. Mann2,3, M. T. Woodhouse3, C. Johnson1, K. S. Carslaw3, and M. Dalvi1
1Met Office Hadley Centre, Exeter, UK
2National Centre for Atmospheric Science, University of Leeds, Leeds, UK
3Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK

Abstract. The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000–2006. HadGEM simulations using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and cloud susceptibilities, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of −0.49 W m−2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of −1.17 W m−2 obtained with GLOMAP-mode is 20% weaker than with CLASSIC. Results suggest that mass-based schemes such as CLASSIC lack the necessary sophistication to provide realistic input to aerosol-cloud interaction schemes. Furthermore, the importance of the 1850 baseline highlights how model skill in predicting present-day aerosol does not guarantee reliable forcing estimates. Those findings suggest that the more complex representation of aerosol processes in microphysical schemes improves the fidelity of simulated aerosol forcings.

Citation: Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model, Atmos. Chem. Phys. Discuss., 12, 21437-21479, doi:10.5194/acpd-12-21437-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share