Atmos. Chem. Phys. Discuss., 12, 21241-21266, 2012
www.atmos-chem-phys-discuss.net/12/21241/2012/
doi:10.5194/acpd-12-21241-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Experimental and modeled UV erythemal irradiance under overcast conditions: the role of cloud optical depth
M. Antón1,2, L. Alados-Arboledas3,4, J. L. Guerrero-Rascado3,4, M. J. Costa2, J. C. Chiu5, and F.J. Olmo3,4
1Departamento de Física, Universidad de Extremadura, Badajoz, Spain
2Geophysics Centre of Evora, University of Evora, Evora, Portugal
3Departamento de Física Aplicada, Universidad de Granada, Granada, Spain
4Centro Andaluz de Medio Ambiente (CEAMA), Universidad de Granada, Granada, Spain
5Department of Meteorology, University of Reading, Reading, UK

Abstract. This paper evaluates the relationship between the cloud modification factor (CMF) in the ultraviolet erythemal range and the cloud optical depth (COD) retrieved from the Aerosol Robotic Network (AERONET) "cloud mode" algorithm under overcast cloudy conditions (confirmed with sky images) at Granada (Spain). Empirical CMF showed a clear exponential dependence on experimental COD values, decreasing approximately from 0.7 for COD = 10 to 0.25 for COD = 50. In addition, these COD measurements were used as input in the LibRadtran radiative transfer code allowing the simulation of CMF values for the selected overcast cases. The modeled CMF exhibited a dependence on COD similar to the empirical CMF, but modeled values present a strong underestimation with respect to the empirical factors (mean bias of 22%). To explain this high bias, an exhaustive comparison between modeled and experimental UV erythemal irradiance (UVER) data was performed. This exercise revealed that a significant part of the bias (~8%) may be related to code's overestimation of the experimental data for clear-sky conditions. The rest of the bias (~14%) may be attributed to the substantial underestimation of modeled UVER with respect to experimental UVER under overcast conditions, although the correlation between both dataset was high (R2 ~0.93). A sensitive test showed that the main responsible for that underestimation is the experimental AERONET COD used as input in the simulations, which has been retrieved from zenith radiances in the visible range. In this sense, effective COD in the erythemal interval were derived from an iteration procedure based on searching the best match between modeled and experimental UVER values for each selected overcast case. These effective COD values were smaller than AERONET COD data in about 80% of the overcast cases with a mean relative difference of 22%.

Citation: Antón, M., Alados-Arboledas, L., Guerrero-Rascado, J. L., Costa, M. J., Chiu, J. C., and Olmo, F.J.: Experimental and modeled UV erythemal irradiance under overcast conditions: the role of cloud optical depth, Atmos. Chem. Phys. Discuss., 12, 21241-21266, doi:10.5194/acpd-12-21241-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share