Atmos. Chem. Phys. Discuss., 12, 19715-19767, 2012
www.atmos-chem-phys-discuss.net/12/19715/2012/
doi:10.5194/acpd-12-19715-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean
C. H. Twohy1, J. R. Anderson2, D. W. Toohey3, M. Andrejczuk4,*, A. Adams1, M. Lytle1, R. C. George5, R. Wood5, P. Saide6, S. Spak6, P. Zuidema7, and D. Leon8
1College of Earth, Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
2School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
3Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
4School of Earth and Environment, University of Leeds, Leeds, UK
5Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
6Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa, USA
7Rosenstiel School of Marine and Atmospheric Sciences University of Miami, USA
8Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming, USA
*now at: Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK

Abstract. The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed.

Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution.

Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths there.

Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.


Citation: Twohy, C. H., Anderson, J. R., Toohey, D. W., Andrejczuk, M., Adams, A., Lytle, M., George, R. C., Wood, R., Saide, P., Spak, S., Zuidema, P., and Leon, D.: Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean, Atmos. Chem. Phys. Discuss., 12, 19715-19767, doi:10.5194/acpd-12-19715-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share