Atmos. Chem. Phys. Discuss., 12, 17151-17185, 2012
www.atmos-chem-phys-discuss.net/12/17151/2012/
doi:10.5194/acpd-12-17151-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impact of anthropogenic emission on air-quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival
K. Huang1,2, G. Zhuang1, Y. Lin1, Q. Wang1, J. S. Fu2, R. Zhang1, J. Li1,3, C. Deng1, and Q. Fu3
1Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
2Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
3Shanghai Environmental Monitoring Center, Shanghai, 200030, China

Abstract. The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activities on air quality in the Chinese megacities as emission sources varied and fluctuated greatly prior to, during and after the festival. Enhanced vehicular emission during the spring travel rush before the festival resulted in high level pollutants of NOx (270 μg m−3), CO (2572 μg m−3), BC (8.5 μg m−3) and extremely low single scattering albedo of 0.70, indicating strong fresh combustion. Organics contributed most to PM2.5, followed by NO3, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks burning caused heavy pollution of extremely high aerosol mass concentration, scattering coefficient, SO2 and NOx. Due to the spring travel rush after the festival, anthropogenic emission gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to the enhanced human activities, e.g. higher demand of energy usage from returned residents and re-open of factories and construction sites, more vehicle mileages due to returned workers and expanded public transportation. The average visibility during whole study period was less than 6 km. It was estimated that about 50% of the total light extinction was due to the high water vapor in the atmosphere. Of the aerosol extinction, organic aerosol had the largest contribution of 47%, followed by sulfate ammonium, nitrate ammonium and EC of 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC) on the formation of air pollution, and suggested the importance of controlling vehicle numbers and emissions in mega-cities of China as its population and economy continue to grow.

Citation: Huang, K., Zhuang, G., Lin, Y., Wang, Q., Fu, J. S., Zhang, R., Li, J., Deng, C., and Fu, Q.: Impact of anthropogenic emission on air-quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival, Atmos. Chem. Phys. Discuss., 12, 17151-17185, doi:10.5194/acpd-12-17151-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share