Atmos. Chem. Phys. Discuss., 12, 15945-15975, 2012
www.atmos-chem-phys-discuss.net/12/15945/2012/
doi:10.5194/acpd-12-15945-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Evaluation of HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem
S. Kim1, G. M. Wolfe2, L. Mauldin1,*, C. Cantrell1, A. Guenther1, T. Karl1, A. Turnipseed1, J. Greenberg1, S. R. Hall1, K. Ullmann1, E. Apel1, R. Hornbrook1, Y. Kajii3, Y. Nakashima3, F. N. Keutsch2, J. P. DiGangi2, S. B. Henry2, L. Kaser4, R. Schnitzhofer4, M. Graus5,6, and A. Hansel4
1ACD/NESL/NCAR, Boulder, CO 80301, USA
2Department of Chemistry, University of Wisconsin, Madison, WI, USA
3Division of Applied Chemistry, Tokyo Metropolitan University, Tokyo, Japan
4University of Innsbruck, Innsbruck, Austria
5CIRES, University of Colorado, Boulder, CO 80309, USA
6Chemical Science Division, ESRL-NOAA, Boulder, CO 80305, USA
*Now at University of Helsinki and University of Colorado, Boulder

Abstract. We present a detailed analysis of OH and HO2 observations from the BEACHON (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen)-ROCS (Rocky Mountain Organic Carbon Study) 2010 field campaign at the Manitou Forest Observatory (MFO), which is a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated forest environment. A comprehensive suite of measurements was used to constrain primary production of OH via ozone photolysis, OH recycling from HO2, and OH chemical loss rates, in order to estimate the steady-state concentration of OH. In addition, the University of Washington Chemical Model (UWCM) was used to evaluate the performance of a near-explicit chemical mechanism. The diurnal cycle in OH from the steady-state calculations is in good agreement with measurement. A comparison between the photolytic production rates and the recycling rates from the HO2 + NO reaction shows that recycling rates are ~20 times faster than the photolytic OH production rates from ozone. Thus, we find that direct measurement of the recycling rates and the OH loss rates can provide accurate predictions of OH concentrations. More importantly, we also conclude that a conventional OH recycling pathway (HO2 + NO) can explain the observed OH levels in this non-isoprene environment. This is in contrast to observations in isoprene-dominated regions, where investigators have observed significant underestimation of OH and have speculated that unknown sources of OH are responsible. The highly-constrained UWCM calculation under-predicts observed HO2 by as much as a factor of 8. As HO2 maintains oxidation capacity by recycling to OH, UWCM underestimates observed OH by as much as a factor of 5. When the UWCM calculation is constrained by measured HO2, model calculated OH is in reasonable agreement with the observed OH levels. Conversely, constraining the model to observed OH only slightly reduces the model-measurement HO2 discrepancy, implying unknown HO2 sources. These findings demonstrate the importance of constraining both the inputs to, and recycling within, the ROx radical pool (OH + HO2 + RO2).

Citation: Kim, S., Wolfe, G. M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A., Greenberg, J., Hall, S. R., Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima, Y., Keutsch, F. N., DiGangi, J. P., Henry, S. B., Kaser, L., Schnitzhofer, R., Graus, M., and Hansel, A.: Evaluation of HOx sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem, Atmos. Chem. Phys. Discuss., 12, 15945-15975, doi:10.5194/acpd-12-15945-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share