Atmos. Chem. Phys. Discuss., 12, 14837-14874, 2012
www.atmos-chem-phys-discuss.net/12/14837/2012/
doi:10.5194/acpd-12-14837-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The impact of deforestation in the Amazonian atmospheric radiative balance: a remote sensing assessment
E. T. Sena, P. Artaxo, and A. L. Correia
Institute of Physics, University of São Paulo, São Paulo, Brazil

Abstract. This paper addresses the Amazonian radiative budget after considering three aspects of deforestation: (i) the emission of aerosols from biomass burning due to forest fires; (ii) changes in surface albedo after deforestation and (iii) modifications in the column water vapour amount over deforested areas. Simultaneous Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes and aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging SpectroRadiometer (MODIS) were analysed during the peak of the biomass burning seasons (August and September) from 2000 to 2009. A discrete-ordinate radiative transfer (DISORT) code was used to extend instantaneous remote sensing radiative forcing assessments into 24-h averages. The mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season for the 10-yr studied period was −5.6 ± 1.7 W m−2. Furthermore, the spatial distribution of the direct radiative forcing of aerosols over Amazon was obtained for the biomass burning season of each year. It was observed that for high AOD (larger than 1 at 550 nm) the imbalance in the radiative forcing at the TOA may be as high as −20 W m−2 locally. The surface reflectance plays a major role in the aerosol direct radiative effect. The study of the effects of biomass burning aerosols over different surface types shows that the direct radiative forcing is systematically more negative over forest than over savannah-like covered areas. Values of −15.7 ± 2.4 W m−2550 nm and −9.3 ± 1.7 W m−2550 nm were calculated for the mean daily aerosol forcing efficiencies over forest and savannah-like vegetation respectively. The overall mean annual albedo-change radiative forcing due to deforestation over the state of Rondônia, Brazil, was determined as −7.3 ± 0.9 W m−2. Biomass burning aerosols impact the radiative budget for approximately two months per year, whereas the surface albedo impact is observed throughout the year. Because of this difference, the estimated impact in the Amazonian annual radiative budget due to surface albedo-change is approximately 6 times higher than the impact due to aerosol emissions. The influence of atmospheric water vapour content in the radiative budget was also studied using AERONET column water vapour. It was observed that column water vapour is in average smaller by about 0.35 cm over deforested areas compared to forested areas. Our results indicate that this drying impact contributes to an increase in the shortwave radiative effect that varies from 0.4 W m−2 to 1.2 W m−2, depending on the column water vapour content before deforestation. The large radiative forcing values presented in this study point out that deforestation has strong implications in convection, cloud development and photosynthesis rate over the Amazon region.

Citation: Sena, E. T., Artaxo, P., and Correia, A. L.: The impact of deforestation in the Amazonian atmospheric radiative balance: a remote sensing assessment, Atmos. Chem. Phys. Discuss., 12, 14837-14874, doi:10.5194/acpd-12-14837-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share