Atmos. Chem. Phys. Discuss., 12, 13619-13665, 2012
www.atmos-chem-phys-discuss.net/12/13619/2012/
doi:10.5194/acpd-12-13619-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010
H. G. Ouwersloot1,2, J. Vilà-Guerau de Arellano1, A. C. Nölscher2, M. C. Krol1, L. N. Ganzeveld3, C. Breitenberger2, I. Mammarella4, J. Williams2, and J. Lelieveld2
1Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands
2Max Planck Institute for Chemistry, Mainz, Germany
3Earth System Sciences – Climate Change, Wageningen University, Wageningen, The Netherlands
4Department of Physics, 00014 University of Helsinki, Finland

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day characterized as a convective boundary layer to analyse the influence of the dynamics on the chemical evolution of the ABL, using a systematic analysis that can easily be extended to other periods during HUMPPA-COPEC-2010. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.

Citation: Ouwersloot, H. G., Vilà-Guerau de Arellano, J., Nölscher, A. C., Krol, M. C., Ganzeveld, L. N., Breitenberger, C., Mammarella, I., Williams, J., and Lelieveld, J.: Characterization of a boreal convective boundary layer and its impact on atmospheric chemistry during HUMPPA-COPEC-2010, Atmos. Chem. Phys. Discuss., 12, 13619-13665, doi:10.5194/acpd-12-13619-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share