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Abstract

Epidemiological studies investigating the human health effects of PM2.5 are suscep-
tible to exposure measurement errors, a form of bias in exposure estimates, since
they rely on data from a limited number of PM2.5 monitors within their study area.
Satellite data can be used to expand spatial coverage, potentially enhancing our ability5

to estimate location- or subject-specific exposures to PM2.5, but some have reported
poor predictive power. A new methodology was developed to calibrate aerosol optical
depth (AOD) data obtained from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). Subsequently, this method was used to predict ground daily PM2.5 con-
centrations in the New England region. 2003 MODIS AOD data corresponding to the10

New England region were retrieved, and PM2.5 concentrations measured at 26 US En-
vironmental Protection Agency (EPA) PM2.5 monitoring sites were used to calibrate the
AOD data. A mixed effects model which allows day-to-day variability in daily PM2.5-
AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentra-
tions measured at the monitoring sites were compared to those predicted for the cor-15

responding grid cells. Both cross-sectional and longitudinal comparisons between the
observed and predicted concentrations suggested that the proposed new calibration
approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentra-
tions. Furthermore, the estimated PM2.5 levels within the study domain were examined
in relation to air pollution sources. Our approach made it possible to investigate the20

spatial patterns of PM2.5 concentrations within the study domain.

1 Introduction

Atmospheric aerosols originate from natural and anthropogenic emission sources. Par-
ticularly, anthropogenic aerosols are considered to have major human health implica-
tions, and numerous studies have reported associations between mortality and morbid-25

ity and particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) (Bell et al., 2007;
Dominici et al., 2006; Franklin et al., 2007; Gent et al., 2003, 2009; Schwartz et al.,
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1996; Slama et al., 2007). The PM2.5 health effect studies generally use PM2.5 mea-
surements from ground monitoring sites, but there are many regions with no ground
PM2.5 measurements available due to their sparse monitoring networks. This limits the
ability of estimating human exposures to PM2.5, which is likely to cause less reliable
health effect assessments.5

Satellite remote sensing can be used to assess PM2.5 air quality for areas where
surface PM2.5 monitors are not available (Di Nicolantonio et al., 2009; Engel-Cox et
al., 2004; Gupta and Christopher, 2008; Gupta et al., 2006; Koelemeijer et al., 2006;
Liu et al., 2004; Schaap et al., 2009; van Donkelaar et al., 2010). The most appli-
cable satellite-retrieved product for estimating PM2.5 concentrations is aerosol optical10

depth (AOD), which measures the light extinction by aerosol scattering and absorption
in the atmospheric column. Since the AOD reflects the integrated amount of particles
in the vertical column, it has been used as an input parameter in statistical models
predicting PM2.5 levels. In addition to AOD values, several studies have also included
other predictor parameters such as local meteorology and land use information (e.g.,15

population density). As reported by previous studies, these parameters influence the
relationship between AOD and ground-level PM2.5 concentrations, thus can be used
as additional predictors (Liu et al., 2005, 2007a, b, c, 2009). However, these models,
developed by us and others, generally predict <60% of the variability in daily PM2.5
concentrations (Paciorek et al., 2008). Additional time-varying parameters influence20

the PM2.5-AOD relationship, including PM2.5 vertical and diurnal concentration profiles,
PM optical properties, and others. Therefore, it is reasonable to expect that the re-
lationship between PM2.5 and AOD varies by day. In this paper we introduce a new
approach to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) AOD
data to accurately predict PM2.5 ground concentrations.25

Our method is unique because it establishes day-specific PM2.5-AOD relationships
using a mixed effects model to fully exploit satellite data. To the best of our knowledge,
no previous studies have suggested a statistical approach establishing the PM2.5-AOD
relations on a daily basis.
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2 Methods

2.1 Ground-level PM2.5 data

Our study region includes the States of Massachusetts (MA), Connecticut (CT), and
Rhode Island (RI) in the Northeastern US. To calibrate satellite data, daily PM2.5 con-
centrations measured at 26 US Environmental Protection Agency (EPA) PM2.5 mon-5

itoring sites were used (Fig. 1). For collocated monitors, we calculated the daily av-
erages of the PM2.5 concentrations. Samples were collected at 15 Connecticut sites
and 11 Massachusetts sites during the period 1 January through 31 December 2003.
Sampling frequency differed by site including collecting samples every day, every third
day, and every sixth day.10

2.2 AOD retrieval

MODIS aboard the National Aeronautics and Space Administration (NASA)’s Earth
Observing System (EOS) satellites, Terra and Aqua, was used to retrieve AOD (Col-
lection 5; Level 2 aerosol product) for the year 2003. The Terra and Aqua satellites
were launched in December 1999 and in May 2002, respectively. These polar-orbiting15

satellites, operating at an altitude of approximately 700 km, provide data every one to
two days under cloud-free conditions. Their sensors scan the swath of 2330 km (cross-
track) by 10 km (along-track at nadir) and gather information on particle abundance
once from each satellite: approximately 10:30 a.m. and 1:30 p.m. local times for Terra
and Aqua, respectively. In the Collection 5 retrieval algorithm, three different channels20

of 0.47, 0.66, and 2.12 µm are primarily employed for over-land retrievals. The chan-
nels of 0.47 and 0.66 µm are used to retrieve AOD values which are interpolated to
report AOD values at the wavelength of 0.55 µm, and the uncertainty of the MODIS
AOD is expected to be ∆AOD=±0.05±0.15×AOD over land. Furthermore, the max-
imum AOD value is constrained to be 5.0, and negative AOD values down to −0.0525

were retained in order to avoid bias that can occur when truncating or omitting low
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exposure values. More details about MODIS satellite data are reported in Remer et
al. (2005) and Levy et al. (2007). Following the nominal resolution of MODIS (10 km),
we created 387 grid cells of 10×10 km2 covering our study region in ArcGIS (Version
9.3; ESRI). Subsequent analyses were based on these grid cells.

Since Terra and Aqua satellites retrieve AOD data at two different times each day,5

the average of these two measurements should be used to predict daily PM2.5 levels
(Kaufman et al., 2000). However, there are many days where only one of the two re-
trievals is available. To fully exploit the measurements of both satellites we primarily
used Terra AOD data for our predictions, and for days with no Terra data, Aqua AOD
measurement values were used to estimate the missing Terra values. This was ac-10

complished by multiplying Aqua AOD measurements by an adjustment factor, which
was necessary to account for diurnal variations (Green et al., 2009) and potential cali-
bration differences in two satellite sensors. This factor was equal to the average Terra
AOD/Aqua AOD ratio which was calculated for days where both Terra and Aqua data
were available.15

2.3 Statistical model

Since time-varying parameters such as relative humidity, PM2.5 vertical and diurnal
concentration profiles, and PM2.5 optical properties influence the PM2.5-AOD relation-
ship, our statistical model allows for day-to-day variability in this relationship. Further-
more, we hypothesize that these time-varying parameters exhibit little spatial variability20

and consequently the PM2.5-AOD relationship varies minimally spatially on a given day
over the spatial scale of our study. Therefore, a quantitative relationship between PM2.5
concentrations measured at 26 PM2.5 monitoring sites and AOD values in their corre-
sponding grid cells can be determined on a daily basis. A simple approach would be
to calculate such PM2.5-AOD slopes separately for each day in the study. However,25

this simplistic approach can yield highly variable slope estimates, since some days
might have a small to moderate amount of monitoring data. An alternative approach
that pools daily slope estimates but uses data from all days to stabilize the estimates
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is to use a mixed effects model with random intercepts and slopes (Fitzmaurice et al.,
2004), shown by the following equations:

PMi j = (α+uj ) + (β1 + vj )×AODi j + si +εi j (1)

(ujvj )∼N[(00),Σβ]

where PMi j is the PM2.5 concentration at a spatial site i on a day j ; AODi j is the AOD5

value in the grid cell corresponding to site i on a day j ; α and uj are the fixed and ran-
dom intercepts, respectively; β1 and vj are the fixed and random slopes, respectively;

si ∼N(0, σ2
s ) is the random intercept of site i ; εi j is the error term at site i on a day

j ; and Σβ is the variance-covariance matrix for the day-specific random effects. In the
statistical model, the AOD fixed effect represents the average effect of AOD on PM2.510

for all study days. The AOD random effects explain the daily variability in the PM2.5-
AOD relationship. The site bias may arise since an AOD value in a 10×10 km2 grid
cell is an average optical depth in the given grid cell, while the PM2.5 concentrations
measured at a given site may not be representative of the whole grid cell. Specifically,
the bias can indicate spatial sites presenting high PM2.5 levels due to their locations15

near high traffic areas. To control for the site bias, we added a site term as a ran-
dom effect into the mixed effects model. It should be noted that the random estimates
for the site term were omitted when estimating grid-specific PM2.5 concentrations from
AOD values, since AOD values are unbiased representatives of the corresponding grid
cells. Because a slope cannot be estimated from a single data point, we excluded all20

the pairs of measured PM2.5 concentrations and their corresponding AOD values when
there was only one pair on a given day before running the mixed effects model. This
resulted in the exclusion of 29 days. Furthermore, the model prediction was examined
using the root mean squared error (RMSE) between the measured and predicted PM2.5

concentrations on each day. Four sample days with RMSE >5 µg m−3 were excluded25

from the analysis, since the daily PM2.5-AOD relationships were not considered reliable
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enough to calibrate AOD data. Finally, PM2.5 estimates covering the whole study area
were produced using the AOD calibration model described above.

To demonstrate whether the mixed effects model improved the ability of AOD to pre-
dict PM2.5 concentrations we compared our model performance to that of a previously
used model which assumes that the PM2.5-AOD relationship remains constant over5

time (Wang and Christopher, 2003). In the previous model, measured PM2.5 concen-
trations were regressed on AOD values retrieved in the corresponding grid cells as
a fixed effect, establishing a single linear PM2.5-AOD relation applied to all sampling
days. It is noted that the comparison of those two models was based on identical
sampling days. As measures of accuracy and precision of the two models, we used10

coefficient of determination (R2) and precision (% Precision) between the measured
and predicted PM2.5 concentrations. The precision was estimated as the square root
of the mean of the squared errors, and % Precision was calculated as follows:

% Precision = 100× (precision/measured mean PM2.5) (2)

2.4 Model validation15

To test this new approach we analyzed the 2003 MODIS data for MA, CT, and RI. We
utilized a cross-validation (CV) method to examine whether the model is generalizable
to any grid cell in the study domain. Toward this end the data of one site (test site) were
separated from those of the other 25 sites (calibration sites). Subsequently, a model
was developed using the data from the calibration sites. Finally, the model was used20

to predict PM2.5 concentrations for the test site. This process was repeated until each
of the 26 spatial sites was tested, and the measured PM2.5 concentrations were com-
pared to those predicted at each site. Furthermore, Pearson correlation coefficients
were used to examine the relationship between the measured and predicted concentra-
tions in each site. Since time-series studies examine longitudinal associations between25

exposures and health outcomes, high correlation coefficients would imply that satellite
AOD data can be used to assess exposures for these health investigations. In addition,
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we examined the agreement between the measured and predicted annual mean PM2.5
concentration levels for each of the 26 sites, which was assessed by the correlation
between the measured and predicted mean PM2.5 concentrations. This comparison
is important for determining whether model predictions are reliable for cross-sectional
studies, which require accurate assessment of spatial patterns in exposure.5

2.5 PM2.5 levels in the study region

PM2.5 levels were estimated for each of the 387 grid cells. Since the AOD retrieval
rate varies by location, the number of PM2.5 concentration predictions varied by grid
cell. Therefore, a direct comparison among cell means would not be adequate for the
investigation of the PM2.5 spatial patterns within the study domain. To minimize the10

potential impact of varying predictions per grid cell we estimated the mean differences
between the predicted grid cell and regional PM2.5 concentrations for the days where
grid cell predictions were available. Note that daily regional PM2.5 concentrations were
calculated by averaging the predicted PM2.5 concentrations for each of the grid cells.
Since the number of AOD retrievals varied by day, the number of available PM2.5 con-15

centrations used to estimate the daily regional average levels varied by day as well.
To obtain reliable and representative regional PM2.5 concentrations we limited our es-
timations to days with 50 or more grid cell predictions. Finally, the grid cell-specific
PM2.5 mean differences between the grid cell and the regional PM2.5 concentrations
were presented using septiles, which split the distribution of the mean differences into20

seven equally-sized bins, in ArcGIS. Positive mean differences, expressed in µg m−3,
indicate that on average levels at a given grid cell are higher relative to the regional
PM2.5 levels, while the opposite is true for negative values.
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3 Results and discussion

3.1 Descriptive statistics

The mean PM2.5 concentrations measured at the 26 EPA PM2.5 monitoring sites in
2003 are summarized in Table 1. The mean (SE) PM2.5 concentrations ranged from
9.0 (0.7) µg m−3 in Haverhill, MA (Site ID: 25-009-5005) to 17.0 (0.5) µg m−3 in New5

Haven, CT (Site ID: 09-009-0018). The mean PM2.5 concentration at the New Haven
site was exceptionally high as compared to those monitored at other sites, possibly
because the site was located on a ramp connecting to interstate I-95. Many of the
monitoring sites showed similar mean PM2.5 concentrations. However, it should be
noted that the number of samples used to estimate these means varied by site due10

to differences in sampling frequencies among sites and missing data. Furthermore,
mean (SE) daily AOD values observed for the 387 grid cells varied from 0.08 (0.02) to
0.36 (0.04). On average 67 AOD values were retrieved per grid cell which corresponds
to 18% of the entire study period of 365 days.

3.2 PM2.5 prediction15

In the mixed effects model, 99 different daily PM2.5-AOD relations were generated
in 2003. The fixed effects of intercept and slope (AOD) were statistically significant
(α=11.9, p< 0.0001; β1 =4.4, p= 0.0049), respectively. The random effects of inter-
cept and slope (AOD) varied considerably by day, with standard deviations of the daily
intercepts and slopes of 8.0 and 2.3, respectively. This supports our hypothesis that20

parameters influencing the relationship between PM2.5 and AOD vary daily but not spa-
tially. Therefore, it is possible to perform daily calibrations using data from the multiple
PM2.5 monitoring sites in the study domain. It is noted that the daily intercepts and
slopes were independent of the number of PM2.5-AOD pairs on a given day. In addi-
tion, the averages of the daily intercepts and slopes were found to be 12.7 (SD=8.7)25
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and 4.6 (SD=2.5) in warm season (15 April–14 October) and 10.1 (SD=5.4) and 3.8
(SD=1.3) in cold season (15 October–14 April), respectively. The random effect es-
timates of the site term for densely populated and high traffic areas were positive as
presented in Table 2. Therefore, inclusion of the site term was necessary to adjust
for the site bias in our model. As shown by Table 3 and Fig. 2a, the mixed effects5

model performed quite well. Table 3 presents the site-specific comparisons between
the measured and predicted PM2.5 concentrations in the mixed effects model, and
the model prediction was reliable for most spatial sites (mean % Precision=13.16%,
Range=7.38 to 25.45%). Moreover, Fig. 2a depicts the results of the linear regression
model which was used to compare the measured and predicted daily concentrations10

for all 26 monitoring sites (R2 =0.97, slope=0.96 (SE=0.01), and intercept=0.44
(SE=0.11)). In addition, Fig. 2b shows the results of the linear regression model used
to compare the measured concentrations to those obtained from the CV procedure
(R2 =0.92, slope=0.92 (SE=0.01), and intercept=0.88 (SE=0.18)). It is noted that
the predicted PM2.5 concentrations from the CV procedure were not adjusted for the15

site bias, due to the fact that this term would not be available for location-specific pre-
dictions in an epidemiological health effects study. The more pronounced difference
between the measured and predicted concentrations in Fig. 2b as compared to Fig. 2a
is likely to reflect the bias. As it can be seen, both the model fit and CV test resulted
in high R2, slopes close to 1, and intercepts close to 0, indicating a good agreement20

between the measured and predicted concentrations.
In the mixed effects model, the differences between measured and predicted PM2.5

levels can be attributed to a combination of monitoring site-specific characteristics as
well as PM2.5 measurement and AOD retrieval errors. For instance, the monitoring site
location may not be representative of a given 10×10 km2 grid cell for an average op-25

tical depth retrieved value. For example, concentrations measured at the New Haven
site (Site ID: 09-009-0018), which was located on a ramp to interstate I-95, were sig-
nificantly higher than those observed at the other sites, including the site (Site ID: 09-
009-0026) located nearby (0.7 km). Therefore, the difference (4.65 µg m−3) between
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the measured and predicted mean PM2.5 concentrations before taking the site bias
into account at the New Haven site can be explained by the fact that this site is not
representative of the corresponding grid cell 10×10 km2 area, and it indicates that the
approach of controlling for the site bias in the mixed effects model is reasonable for the
comparisons between the measured and predicted PM2.5 concentrations. However,5

considering that AOD-derived PM2.5 concentrations reflect the overall PM2.5 levels in
the grid cell, the unadjusted predicted PM2.5 levels may be more representative of the
average population exposures to PM2.5.

AOD retrieval errors due to unscreened clouds could introduce positive bias. The cur-
rent cloud screening algorithm in AOD retrievals (Collection 5) effectively masks clouds,10

but it is still possible to have AOD values affected by clouds, particularly for isolated
and residual clouds (Levy et al., 2007). The comparison between MODIS AOD and the
Aerosol Robotic Network (AERONET) AOD (Level 2.0; within ±30 min of Terra mea-
surements) in Billerica could indicate days with positive bias potentially from isolated
and residual clouds in the area (correlation r = 0.92; slope=1.20; intercept=−0.00215

in a linear regression model between the MODIS AOD and the AERONET AOD data)
(Holben et al., 1998). Consequently, the AOD values overestimated by the clouds may
cause positive bias in predicted PM2.5 concentrations. In part, PM2.5 measurement
errors might cause positive or negative bias in measured PM2.5 levels.

The ability of the mixed effects and linear regression models to predict PM2.5 con-20

centrations was compared. For each model the predicted concentrations were re-
gressed on the observed ones for each site separately (Table 4 and Fig. 3). It should
be noted that the CV method produces less biased estimates than those obtained from
the model fit (shown in Tables 3 and 4). The two models were compared using results
from CV analyses to avoid over-fitting thus to produce more robust results. Note that25

the predicted PM2.5 concentrations in the mixed effects model were not adjusted for
the site bias (Table 4 and Fig. 3). The mixed effects model explained 95% of the vari-
ability in the measured PM2.5 concentrations on average, ranged from 82% in Boston,
MA (Site ID: 25-025-0027) to 100% in Bridgeport, CT (Site ID: 09-001-0010). On the

9779

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

other hand, in the linear regression model, the mean variability of the measured PM2.5
explained by the predicted PM2.5 was 51%, ranging from 12% in Boston, MA (Site
ID: 25-025-0027) to 88% in Stamford, CT (Site ID: 09-001-2124). While the regres-
sion model yielded modest and considerably varying predictability by site, our model
demonstrated consistently high predictability for most of the sites. These findings sug-5

gest that predicting PM2.5 within a domain requires the use of daily calibrations. This
explains why previous investigations have not demonstrated that AOD can be a robust
predictor of PM2.5 (Paciorek and Liu, 2009; Paciorek et al., 2008).

The predictive ability of our model was also compared to that of the regression model
in terms of percent precision (% Precision) (Table 4 and Fig. 3). Note that this compar-10

ison was performed using the CV results as well. Since the R2 does not reflect sys-
tematic differences between the measured and predicted PM2.5 levels, the measure of
precision (% Precision) is necessary to better assess model performance. In the mixed
effects model, the % CV precision ranged from 8.8% (1.08 µg m−3) in New Haven, CT
(Site ID: 09-009-0026) to 38.6% (4.08 µg m−3) in Lynn, MA (Site ID: 25-009-2006) with15

the mean value of 20.0% (2.45 µg m−3). For the regression model the estimated mean
% CV precision was 59.5% (7.40 µg m−3), varying from 41.1% (4.59 µg m−3) in Fall
River, MA (Site ID: 25-005-1004) to 89.8 % (12.73 µg m−3) in Boston, MA (Site ID:
25-025-0027).

With regard to the measures of CV R2 and precision values, our model presented20

considerably higher CV R2 (0.95) and lower CV precision (20.0%, 2.45 µg m−3) than
those estimated for the regression model (CV R2 =0.51, % CV precision=59.5%
(7.40 µg m−3)). Also, the cross-sectional comparison between the measured and pre-
dicted site mean PM2.5 concentrations was performed for both models. As shown in
Fig. 4, a higher correlation coefficient (R2 =0.62; Pearson r =0.79) was determined for25

the mixed effects model as compared to that estimated for the linear regression model
(R2 =0.26; Pearson r = 0.51). Overall, the performance of the mixed effects model
to predict surface-level PM2.5 concentrations was superior as compared to that of the
regression model. Collectively, these performance tests suggest that the mixed effects
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model can be used to produce concentration data sets reliable for both time-series and
cross-sectional health effect studies.

3.3 Spatial variability in PM2.5 levels

The spatial patterns of PM2.5 levels within the study domain are shown in Fig. 5.
To highlight the spatial patterns, we used the mean differences between grid-specific5

PM2.5 and regional PM2.5 levels, as mentioned above. Mean concentration differences
varied from −0.36 to 0.87 µg m−3 (mean=0.01 µg m−3, SD=0.17 µg m−3), and were
log-normally distributed, which led us to use septiles for characterizing the spatial vari-
ability of PM2.5 levels in our study region. The relatively small difference between
the lowest and highest values (1.23 µg m−3) compared to the one presented in Ta-10

ble 4 can be explained by the fact that the result of Fig. 5 represented average cell
concentrations which were based on the large number of overlapping days, while the
large variability in average PM2.5 concentrations between sites in Table 4 was derived
from the limited number of samples, used to calculate the means, which did not corre-
spond to the same time period. As expected, highly populated areas such as Bridge-15

port, New Haven, Hartford, Boston, Springfield, and Providence exhibited higher PM2.5
levels. Also, higher PM2.5 levels were predicted along the major interstate highways
(e.g., I-91/95) and areas with high point emission sources (e.g., power plants located
in coastal cities) (US EPA, 2008). The concentration spatial patterns observed in east-
ern Massachusetts were similar to those found by our previous studies (Gryparis et20

al., 2007). Furthermore, the estimated PM2.5 levels in western Massachusetts were
generally lower, which is due to the lower population density and traffic density in the
area. However, it must be noted that the reported PM2.5 spatial patterns may not be
representative of the entire year, since AOD values are less likely to be collected during
the cold season due to more frequent cloud conditions during this period. The average25

number of the predicted PM2.5 concentrations in each grid cell was 39 (SD=6) days in
warm season and 14 (SD=5) days in cold season.
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4 Conclusions

Satellite AOD data have been increasingly used for PM2.5 air pollution studies. Re-
mote sensing technologies have a great potential to expand current ground-level PM2.5
monitoring networks. To date, the application of satellite data to health effect studies
has been limited mostly due to the insufficient power of AOD to predict PM2.5 and the5

high frequency of non-retrieval days. We have introduced an AOD calibration method
which made it possible to determine the temporal and spatial patterns of PM2.5 in a
large study domain comprising the States of Massachusetts, Connecticut, and Rhode
Island. An approach to PM2.5 prediction for non-retrieval days will be presented in our
forthcoming paper.10

Finally, it is anticipated that future satellite technologies will provide data with finer
spatial and temporal resolutions and more accurate data retrievals. In addition, the
advanced capability of discriminating by aerosol species in satellite technologies will
further contribute to health effect studies investigating species-specific health implica-
tions. Since satellite data are readily available, PM2.5 concentrations can be predicted15

in a cost-effective way. Considering the sparse ground-level PM2.5 monitoring net-
works, our method will help to investigate the associations between subject-specific
exposures to PM2.5 and their health effects.
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Table 1. PM2.5 concentrations (µg m−3) observed at the 26 EPA monitoring sites in 2003.

Site ID City N Mean SE

09-001-0010 Bridgeport, CT 97 12.2 0.8
09-001-0113 Bridgeport, CT 94 11.7 0.8
09-001-1123 Danbury, CT 101 13.0 0.9
09-001-2124 Stamford, CT 100 13.3 0.9
09-001-3005 Norwalk, CT 99 12.0 0.8
09-001-9003 Westport, CT 108 11.0 0.7
09-003-1003 E. Hartford, CT 310 11.4 0.4
09-003-1018 Hartford, CT 92 12.3 0.9
09-009-0018 New Haven, CT 307 17.0 0.5
09-009-0026 New Haven, CT 70 11.5 1.1
09-009-1123 New Haven, CT 108 13.4 0.8
09-009-2008 New Haven, CT 79 12.0 1.1
09-009-2123 Waterbury, CT 110 12.4 0.8
09-009-8003 W. Haven, CT 77 12.6 1.1
09-011-3002 Norwich, CT 79 10.7 0.7
25-005-1004 Fall River, MA 90 10.2 0.8
25-009-2006 Lynn, MA 78 10.3 1.2
25-009-5005 Haverhill, MA 87 9.0 0.7
25-013-0008 Chicopee, MA 237 9.7 0.4
25-013-0016 Springfield, MA 265 12.8 0.5
25-013-2009 Springfield, MA 75 11.3 1.0
25-023-0004 Brockton, MA 97 10.0 0.8
25-025-0027 Boston, MA 198 11.7 0.5
25-025-0042 Boston, MA 246 11.5 0.5
25-025-0043 Boston, MA 96 13.1 0.8
25-027-0020 Worcester, MA 231 11.7 0.5
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Table 2. Site bias (µg m−3) estimates for 26 EPA PM2.5 monitoring sites.

Site ID City Biasa p-value

09-001-0010 Bridgeport, CT 0.77 0.18
09-001-0113 Bridgeport, CT 0.57 0.28
09-001-1123 Danbury, CT 0.47 0.40
09-001-2124 Stamford, CT 1.22 0.03
09-001-3005 Norwalk, CT 1.18 0.03
09-001-9003 Westport, CT 0.24 0.68
09-003-1003 E. Hartford, CT −0.57 0.17
09-003-1018 Hartford, CT −0.09 0.86
09-009-0018 New Haven, CT 4.49 < .0001
09-009-0026 New Haven, CT 0.30 0.58
09-009-1123 New Haven, CT 1.35 0.006
09-009-2008 New Haven, CT 0.03 0.96
09-009-2123 Waterbury, CT 0.46 0.34
09-009-8003 W. Haven, CT 1.70 0.002
09-011-3002 Norwich, CT −0.08 0.89
25-005-1004 Fall River, MA −0.27 0.66
25-009-2006 Lynn, MA −2.64 < .0001
25-009-5005 Haverhill, MA −1.64 0.003
25-013-0008 Chicopee, MA −1.92 < .0001
25-013-0016 Springfield, MA −0.001 0.998
25-013-2009 Springfield, MA −0.55 0.31
25-023-0004 Brockton, MA −1.71 0.002
25-025-0027 Boston, MA −1.37 0.04
25-025-0042 Boston, MA −0.43 0.45
25-025-0043 Boston, MA 0.004 0.996
25-027-0020 Worcester, MA −1.48 0.002

a Bias represents the random effect estimates of the site term in the mixed effects model.
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Table 3. Mixed effects model performance by sitea.

Site ID City N PM2.5 measured PM2.5 predicted Biasb R2 Precisionc % Precisiond

09-001-0010 Bridgeport, CT 15 11.59 11.50 −0.08 1.00 0.96 8.31
09-001-0113 Bridgeport, CT 19 9.64 9.59 −0.05 0.97 1.15 11.89
09-001-1123 Danbury, CT 16 13.96 13.91 −0.05 0.98 1.85 13.29
09-001-2124 Stamford, CT 14 12.63 12.48 −0.14 0.98 1.42 11.21
09-001-3005 Norwalk, CT 18 13.49 13.38 −0.11 0.99 1.32 9.81
09-001-9003 Westport, CT 15 11.07 11.05 −0.03 0.99 1.12 10.16
09-003-1003 E. Hartford, CT 56 13.99 14.01 0.02 0.98 1.41 10.04
09-003-1018 Hartford, CT 18 8.98 8.99 0.01 0.97 0.76 8.44
09-009-0018 New Haven, CT 45 19.46 19.30 −0.16 0.97 2.17 11.17
09-009-0026 New Haven, CT 18 12.32 12.30 −0.03 0.99 0.91 7.38
09-009-1123 New Haven, CT 25 12.54 12.45 −0.09 0.99 1.01 8.02
09-009-2008 New Haven, CT 25 14.36 14.35 0.00 0.99 1.40 9.72
09-009-2123 Waterbury, CT 25 11.44 11.41 −0.03 0.99 1.07 9.38
09-009-8003 W. Haven, CT 16 17.04 16.87 −0.18 0.98 2.77 16.28
09-011-3002 Norwich, CT 14 8.21 8.22 0.01 0.97 0.81 9.83
25-005-1004 Fall River, MA 12 11.16 11.20 0.04 0.95 2.37 21.21
25-009-2006 Lynn, MA 13 10.57 10.90 0.34 0.97 2.20 20.81
25-009-5005 Haverhill, MA 17 11.44 11.60 0.16 0.98 1.47 12.88
25-013-0008 Chicopee, MA 34 9.33 9.42 0.09 0.93 2.14 22.98
25-013-0016 Springfield, MA 44 12.73 12.73 0.00 0.97 1.70 13.39
25-013-2009 Springfield, MA 18 10.30 10.35 0.05 0.98 1.30 12.59
25-023-0004 Brockton, MA 18 8.99 9.15 0.16 0.95 2.29 25.45
25-025-0027 Boston, MA 15 14.17 14.32 0.15 0.92 2.90 20.50
25-025-0042 Boston, MA 22 15.24 15.27 0.03 0.98 1.81 11.85
25-025-0043 Boston, MA 6 15.45 15.45 0.00 0.99 1.53 9.89
25-027-0020 Worcester, MA 38 10.25 10.32 0.06 0.93 1.60 15.62

a The measured and predicted PM2.5 concentrations, bias, and precision are in the unit of µg m−3.
b Bias is defined as (PM2.5 predicted – PM2.5 measured).
c Precision is estimated as the square root of the mean of the squared errors.
d % Precision is defined as (100× (precision/PM2.5 measured)).
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Table 4. Comparisons of CV R2 and % CV Precision (µg m−3 for CV precision) between
the measured and predicted PM2.5 concentrations using mixed effects model and regression
modela.

Site ID City N PM2.5 measured PM2.5 predicted Biasb R2 Precisionc % Precisiond

Mixed effects model

09-001-0010 Bridgeport, CT 15 11.59 10.66 −0.93 1.00 1.45 12.54
09-001-0113 Bridgeport, CT 19 9.64 8.84 −0.80 0.95 1.77 18.33
09-001-1123 Danbury, CT 16 13.96 13.43 −0.53 0.96 2.39 17.11
09-001-2124 Stamford, CT 14 12.63 11.23 −1.40 0.98 2.10 16.64
09-001-3005 Norwalk, CT 18 13.49 12.16 −1.33 0.99 2.03 15.06
09-001-9003 Westport, CT 15 11.07 10.72 −0.36 0.98 1.44 13.00
09-003-1003 E. Hartford, CT 56 13.99 14.64 0.65 0.95 2.29 16.34
09-003-1018 Hartford, CT 18 8.98 9.05 0.06 0.95 0.98 10.91
09-009-0018 New Haven, CT 45 19.46 14.56 −4.90 0.95 5.66 29.11
09-009-0026 New Haven, CT 18 12.32 12.00 −0.32 0.99 1.08 8.78
09-009-1123 New Haven, CT 25 12.54 11.01 −1.53 0.99 1.92 15.34
09-009-2008 New Haven, CT 25 14.36 14.31 −0.05 0.99 1.54 10.72
09-009-2123 Waterbury, CT 25 11.44 10.94 −0.50 0.99 1.33 11.62
09-009-8003 W. Haven, CT 16 17.04 15.09 −1.95 0.97 3.67 21.55
09-011-3002 Norwich, CT 14 8.21 8.30 0.09 0.96 1.03 12.49
25-005-1004 Fall River, MA 12 11.16 11.25 0.09 0.92 3.03 27.13
25-009-2006 Lynn, MA 13 10.57 13.77 3.20 0.96 4.08 38.58
25-009-5005 Haverhill, MA 17 11.44 13.52 2.08 0.97 2.88 25.20
25-013-0008 Chicopee, MA 34 9.33 11.55 2.22 0.90 3.43 36.78
25-013-0016 Springfield, MA 44 12.73 12.81 0.08 0.94 2.37 18.63
25-013-2009 Springfield, MA 18 10.30 10.89 0.59 0.97 1.60 15.51
25-023-0004 Brockton, MA 18 8.99 10.94 1.95 0.94 3.30 36.69
25-025-0027 Boston, MA 15 14.17 16.04 1.86 0.82 4.64 32.72
25-025-0042 Boston, MA 22 15.24 15.70 0.46 0.95 2.90 19.02
25-025-0043 Boston, MA 6 15.45 15.48 0.03 0.99 1.82 11.75
25-027-0020 Worcester, MA 38 10.25 12.10 1.84 0.87 2.94 28.66
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Table 4. Continued.

Regression model

09-001-0010 Bridgeport, CT 15 11.59 13.52 1.93 0.40 8.14 70.29
09-001-0113 Bridgeport, CT 19 9.64 11.95 2.30 0.67 4.43 45.95
09-001-1123 Danbury, CT 16 13.96 10.26 −3.69 0.71 8.21 58.80
09-001-2124 Stamford, CT 14 12.63 9.80 −2.83 0.88 6.96 55.10
09-001-3005 Norwalk, CT 18 13.49 12.24 −1.25 0.38 8.53 63.24
09-001-9003 Westport, CT 15 11.07 12.09 1.01 0.48 5.94 53.64
09-003-1003 E. Hartford, CT 56 13.99 13.04 −0.96 0.39 7.78 55.64
09-003-1018 Hartford, CT 18 8.98 10.76 1.78 0.41 3.84 42.79
09-009-0018 New Haven, CT 45 19.46 13.47 −5.99 0.44 11.00 56.52
09-009-0026 New Haven, CT 18 12.32 13.74 1.42 0.70 6.03 48.96
09-009-1123 New Haven, CT 25 12.54 11.84 −0.70 0.62 6.74 53.73
09-009-2008 New Haven, CT 25 14.36 14.05 −0.31 0.66 8.18 57.00
09-009-2123 Waterbury, CT 25 11.44 10.16 −1.28 0.63 5.75 50.25
09-009-8003 W. Haven, CT 16 17.04 13.28 −3.76 0.58 11.57 67.90
09-011-3002 Norwich, CT 14 8.21 9.32 1.11 0.43 4.04 49.25
25-005-1004 Fall River, MA 12 11.16 12.46 1.31 0.79 4.59 41.10
25-009-2006 Lynn, MA 13 10.57 13.80 3.23 0.72 8.73 82.56
25-009-5005 Haverhill, MA 17 11.44 12.48 1.04 0.73 6.36 55.61
25-013-0008 Chicopee, MA 34 9.33 10.19 0.86 0.25 6.19 66.39
25-013-0016 Springfield, MA 44 12.73 11.44 −1.28 0.30 8.13 63.86
25-013-2009 Springfield, MA 18 10.30 11.66 1.36 0.36 6.24 60.62
25-023-0004 Brockton, MA 18 8.99 11.02 2.03 0.44 5.76 64.03
25-025-0027 Boston, MA 15 14.17 21.08 6.90 0.12 12.73 89.83
25-025-0042 Boston, MA 22 15.24 18.24 3.00 0.40 10.25 67.24
25-025-0043 Boston, MA 6 15.45 19.44 3.99 0.68 9.54 61.74
25-027-0020 Worcester, MA 38 10.25 12.54 2.28 0.17 6.63 64.69

a The measured and predicted PM2.5 concentrations, bias, and precision are in the unit of µg m−3.
b Bias is defined as (PM2.5 predicted – PM2.5 measured).
c Precision is estimated as the square root of the mean of the squared errors.
d % Precision is defined as (100× (precision/PM2.5 measured)).
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Fig. 1. PM2.5 monitoring site locations in 2003.
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Fig. 2. Mixed effects model performance assessed by 576 measured and predicted daily PM2.5

concentrations (µg m−3) from: (A) mixed effects model and (B) CV mixed effects model. The
solid line represents the regression line, and the dashed line displays the 1:1 line.
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Fig. 3. Cross-validation correlation coefficients and % Precision between the measured and
predicted PM2.5 concentrations for the: (A) mixed effects model and (B) regression model.
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Fig. 4. Cross-sectional comparisons between the measured and predicted site mean PM2.5

concentrations (µg m−3) for the: (A) mixed effects model and (B) regression model (both from
CV analyses). The solid line represents the regression line, and the dashed line displays the
1:1 line.
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Fig. 5. Spatial variability in PM2.5 levels in the study region. PM2.5 levels are expressed as
differences between grid-specific predicted and regional PM2.5 concentrations (µg m−3).
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