Atmos. Chem. Phys. Discuss., 11, 5757-5784, 2011
www.atmos-chem-phys-discuss.net/11/5757/2011/
doi:10.5194/acpd-11-5757-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations
D. M. Westervelt1, R. H. Moore2, A. Nenes2,3, and P. J. Adams1,4
1Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
3School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
4Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. This work quantifies the primary marine organic aerosol global emission source and its impact on cloud condensation nuclei (CCN) concentrations by implementing an organic sea spray source function into a series of global aerosol simulations. The source function assumes that a fraction of the sea spray emissions, depending on the local chlorophyll concentration, is organic matter in place of NaCl. Effect on CCN concentrations (at 0.2% supersaturation) is modeled using the Two-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled to the GISS II-prime general circulation model. The presence of organics affects CCN activity in competing ways: by reducing the amount of solute available in the particle and decreasing surface tension of CCN. To model surfactant effects, surface tension depression data from seawater samples taken near the Georgia coast were applied as a function of carbon concentrations. A global marine organic aerosol emission rate of 17.7 Tg C yr−1 is estimated from the simulations. Marine organics exert a localized influence on CCN(0.2%) concentrations, decreasing regional concentrations by no more than 5% and by less than 0.5% over most of the globe. The decrease in CCN concentrations results from the fact that the decrease in particle solute concentration outweighs the organic surfactant effects. The low sensitivity of CCN(0.2%) to the marine organic emissions is likely due to the small compositional changes: the mass fraction of OA in accumulation mode aerosol increases by only 15% in a biologically active region of the Southern Ocean.

Citation: Westervelt, D. M., Moore, R. H., Nenes, A., and Adams, P. J.: Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations, Atmos. Chem. Phys. Discuss., 11, 5757-5784, doi:10.5194/acpd-11-5757-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share