Atmos. Chem. Phys. Discuss., 11, 531-566, 2011
www.atmos-chem-phys-discuss.net/11/531/2011/
doi:10.5194/acpd-11-531-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The fluorescence properties of aerosol larger than 0.8 μm in an urban and a PBA-dominated location
A. M. Gabey1, W. R. Stanley2, M. W. Gallagher1, and P. H. Kaye2
1Centre for Atmospheric Science, University of Manchester, UK
2Science and Technology Research Institute, University of Hertfordshire, UK

Abstract. Dual-wavelength Ultraviolet light-induced fluorescence (UV-LIF) measurements were performed on ambient environmental aerosol in Manchester, UK (urban city centre, winter) and Borneo, Malaysia (remote, tropical), which are taken to represent environments with negligible and significant primary biological aerosol (PBA) influences, respectively. Single-particle fluorescence intensity and optical equivalent diameter were measured with a Wide Issue Bioaerosol Sensor, version 3 (WIBS3) in the diameter range 0.8 μm≤DP≤20 μm for 2–3 weeks and filters were analysed using energy dispersive X-ray (EDX) spectroscopy, which revealed mostly non-PBA dominated particle sizes larger than 1 μm in Manchester.

The WIBS3 features three fluorescence channels: Fluorescence excited at 280 nm is recorded at 310–400 nm and 400–600 nm and fluorescence excited at 370 nm is detected at 400–600 nm. In Manchester the primary size mode of fluorescent and non-fluorescent material was at 1.2 μm. In Borneo non-fluorescent material peaked at 1.2 μm and fluorescent at 3–4 μm. The fluorescence intensity at 400–600 nm generally increased with DP at both sites, as did the 310–400 nm intensity in Borneo. In Manchester the 310–400 m fluorescence decreased at DP>4 μm, suggesting this channel offers additional discrimination between fluorescent particle types. Finally, the ratio of fluorescence intensity in two pairs of channels was investigated as a function of particle diameter and this varied significantly between the two environments, demonstrating that the fluorescent aerosol in each can in principle be distinguished using a combination of fluorescence and elastic scattering measurements.


Citation: Gabey, A. M., Stanley, W. R., Gallagher, M. W., and Kaye, P. H.: The fluorescence properties of aerosol larger than 0.8 μm in an urban and a PBA-dominated location, Atmos. Chem. Phys. Discuss., 11, 531-566, doi:10.5194/acpd-11-531-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share