Atmos. Chem. Phys. Discuss., 11, 32647-32684, 2011
www.atmos-chem-phys-discuss.net/11/32647/2011/
doi:10.5194/acpd-11-32647-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Shortwave radiative forcing and efficiency of key aerosol types using AERONET data
O. E. García1,*, J. P. Díaz1, F. J. Expósito1, A. M. Díaz1, O. Dubovik2, Y. Derimian2, P. Dubuisson2, and J.-C. Roger3
1Grupo de Observación de la Tierra y la Atmósfera (GOTA), Universidad de La Laguna, Tenerife, Spain
2Laboratoire d'Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
3Laboratoire de Météorologie Physique, Université Blaise Pascal, Clermont-Ferrand, France
*now at: Centro de Investigación Atmósferica de Izaña (CIAI), Agencia Estatal de Meteorología (AEMET), Spain

Abstract. The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the top (TOA) and at the bottom of atmosphere (BOA) modeled based on AERONET aerosol retrievals. In this study we have considered six main types of atmospheric aerosols: desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere. The ΔF averages obtained vary from −148 ± 44 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in Central Africa and −42 ± 22 Wm−2 (AOD = 0.86 ± 0.51) at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system, contributing to the greenhouse gas effect.

Citation: García, O. E., Díaz, J. P., Expósito, F. J., Díaz, A. M., Dubovik, O., Derimian, Y., Dubuisson, P., and Roger, J.-C.: Shortwave radiative forcing and efficiency of key aerosol types using AERONET data, Atmos. Chem. Phys. Discuss., 11, 32647-32684, doi:10.5194/acpd-11-32647-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share