Atmos. Chem. Phys. Discuss., 11, 31585-31642, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia
J.-M. Diesch1, F. Drewnick1, S. R. Zorn1,*, S.-L. von der Weiden-Reinmüller1, M. Martinez2, and S. Borrmann1,3
1Particle Chemistry Department, Max-Planck-Institute for Chemistry, Mainz, Germany
2Atmospheric Chemistry Department, Max-Planck-Institute for Chemistry, Mainz, Germany
3Institute for Atmospheric Physics, University of Mainz, Mainz, Germany
*now at: School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

Abstract. Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters.

Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m−3 and 1000 cm−3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase.

In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component contributing an average of 43% of the particulate organic mass while the semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA dependent on the air mass origin.

The variability of ozone is not only affected by different types of air masses but also significantly by the diurnal variation as a consequence of the solar radiation as well as local meteorological parameters.

Citation: Diesch, J.-M., Drewnick, F., Zorn, S. R., von der Weiden-Reinmüller, S.-L., Martinez, M., and Borrmann, S.: Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia, Atmos. Chem. Phys. Discuss., 11, 31585-31642, doi:10.5194/acpd-11-31585-2011, 2011.
Search ACPD
Discussion Paper
    Final Revised Paper