Atmos. Chem. Phys. Discuss., 11, 2991-3040, 2011
www.atmos-chem-phys-discuss.net/11/2991/2011/
doi:10.5194/acpd-11-2991-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain
P. F. Liu1, C. S. Zhao1, T. Göbel2, E. Hallbauer2, A. Nowak2, L. Ran1, W. Y. Xu1, Z. Z. Deng1, N. Ma1, K. Mildenberger2, S. Henning2, F. Stratmann2, and A. Wiedensohler2
1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
2Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany

Abstract. The hygroscopic properties of submicron aerosol particles were determined at a suburban site (Wuqing) in the North China Plain among a cluster of cities during the period 17 July to 12 August 2009. A High Humidity Tandem Differential Mobility Analyser (HH-TDMA) instrument was applied to measure the hygroscopic growth factor (GF) at 90%, 95% and 98.5% relative humidity (RH) for particles with dry diameter between 50–250 nm. The probability distribution of GF (GF-PDF) averaged over the period shows a distinct bimodal pattern, namely, a dominant more-hygroscopic (MH) group and a smaller nearly-hydrophobic (NH) group. The MH group particles were highly hygroscopic, and their GF was relatively constant during the period with average values of 1.54±0.02, 1.81±0.04 and 2.45±0.07 at 90%, 95% and 98.5% RH (D0=100 nm), respectively. The NH group particles grew very slightly when exposed to high RH, with GF values of 1.08±0.02, 1.13±0.06 and 1.24±0.13, respectively at 90%, 95% and 98.5% RH (D0=100 nm). The hygroscopic growth behaviours at different RHs were well represented by the hygroscopicity parameter κ with a single-parameter Köhler model. Thus, the calculation of GF as a function of RH and dry diameter could be facilitated by an empirical parameterization of κ as function of dry diameter. A strong diurnal pattern in number fraction of different hygroscopic groups was observed, indicating a diurnal variation of aerosol mixing state and/or chemical composition. The average number fraction of NH particles during the day was about 8%, while during the nighttime fractions up to 20% were reached. Correspondingly, the state of mixing in terms of water uptake varied significantly during a day. The high fraction of NH particles measured during the night denotes a high degree of external mixing of ambient aerosols, while during the day the degree of external mixing decreased. Simulations using a particle-resolved aerosol box model (PartMC-MOSAIC) suggest that the diurnal variations of aerosol hygroscopicity and mixing state were mainly caused by the evolution of the atmospheric mixing layer. The shallow nocturnal boundary layer during the night facilitated the accumulation of freshly emitted carbonaceous particles (mainly hydrophobic) near the surface while in the morning turbulence entrained the more aged and more hygroscopic particles from aloft and diluted the NH particles near the surface resulting in a decrease in the fraction of NH particles.

Citation: Liu, P. F., Zhao, C. S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W. Y., Deng, Z. Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F., and Wiedensohler, A.: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain, Atmos. Chem. Phys. Discuss., 11, 2991-3040, doi:10.5194/acpd-11-2991-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share