Atmos. Chem. Phys. Discuss., 11, 24969-25010, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study
C. L. Loza1, P. S. Chhabra1,*, L. D. Yee2, J. S. Craven1, R. C. Flagan1,2, and J. H. Seinfeld1,2
1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
2Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
*now at: Aerodyne Research, Inc., Billerica, MA, USA

Abstract. Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NOx conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas-phase or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass increased over the initial 12-h of photooxidation and decreased beyond that time. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, decreased during the first 5 h of reaction, reached a minimum, and then increased continuously until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. After about 12–13 h, the SOA mass reaches a maximum and decreases, suggesting the existence of fragmentation chemistry. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, no loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NOx conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out.

Citation: Loza, C. L., Chhabra, P. S., Yee, L. D., Craven, J. S., Flagan, R. C., and Seinfeld, J. H.: Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study, Atmos. Chem. Phys. Discuss., 11, 24969-25010, doi:10.5194/acpd-11-24969-2011, 2011.
Search ACPD
Discussion Paper
    Final Revised Paper