Atmos. Chem. Phys. Discuss., 11, 22483-22544, 2011
www.atmos-chem-phys-discuss.net/11/22483/2011/
doi:10.5194/acpd-11-22483-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Evolution of trace gases and particles emitted by a chaparral fire in California
S. K. Akagi1, J. S. Craven2, J. W. Taylor3, G. R. McMeeking3,*, R. J. Yokelson1, I. R. Burling1, S. P. Urbanski4, C. E. Wold4, J. H. Seinfeld2, H. Coe3, M. J. Alvarado5, and D. R. Weise6
1University of Montana, Department of Chemistry, Missoula, MT, USA
2California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA, USA
3University of Manchester, Centre for Atmospheric Science, Manchester, UK
4United States Forest Service, Fire Sciences Laboratory, Missoula, MT, USA
5Atmospheric and Environmental Research (AER), Inc., Lexington, MA, USA
6USDA Forest Service, Pacific Southwest Research Station, Forest Fire Laboratory, Riverside, CA, USA
*now at: Department of Atmospheric Science, Colorado State University, Fort Collins, USA

Abstract. Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 ha prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured post-emission chemical changes in the isolated downwind plume for ~4 h of smoke aging. The measurements were carried out on board a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO) increased from −0.005 to 0.102 in 4.5 h. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.7 ± 0.4 and 7.3 ± 3.0 (respectively) over the same aging period. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.3 (±1.0) × 106 molecules cm−3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased with plume aging. The observed ammonium increase was a factor of 3.9 ± 2.6 in about 4 h, but accounted for just ~36 % of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NOx was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate over a 4 h aging period. The excess aerosol light scattering in the plume (normalized to excess CO2) increased by a factor of 2.3 ± 0.7 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO2 decreased sharply for the first hour and then increased slowly with a net decrease of ~24 % over 4 h. The fraction of thickly coated rBC particles increased almost twofold over the 4 h aging period. Decreasing OA accompanied by increased scattering/coating in the initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations.

Citation: Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys. Discuss., 11, 22483-22544, doi:10.5194/acpd-11-22483-2011, 2011.
 
Search ACPD
Discussion Paper
XML
Citation
Final Revised Paper
Share