Atmos. Chem. Phys. Discuss., 11, 21877-21933, 2011
www.atmos-chem-phys-discuss.net/11/21877/2011/
doi:10.5194/acpd-11-21877-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the Southeastern United States
N. F. Taylor1, D. R. Collins1, C. W. Spencer1, D. H. Lowenthal2, B. Zielinska2, V. Samburova2, and N. Kumar3
1Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
2Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, USA
3Electric Power Research Institute, Palo Alto, California, USA

Abstract. We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA) configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA). This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12 % of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88 % did not posses multiple possible states. In continuous measurements during the winter, 49 % of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65 % occupied the more hydrated state; 35 % occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5) composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

Citation: Taylor, N. F., Collins, D. R., Spencer, C. W., Lowenthal, D. H., Zielinska, B., Samburova, V., and Kumar, N.: Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the Southeastern United States, Atmos. Chem. Phys. Discuss., 11, 21877-21933, doi:10.5194/acpd-11-21877-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share