Atmos. Chem. Phys. Discuss., 11, 20757-20792, 2011
www.atmos-chem-phys-discuss.net/11/20757/2011/
doi:10.5194/acpd-11-20757-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China
J. Yoon, W. von Hoyningen-Huene, M. Vountas, and J. P. Burrows
Institute of Environmental Physics, University of Bremen, Bremen, Germany

Abstract. The main purpose of the present paper is to derive and discuss linear long-term trends of Aerosol Optical Thickness (AOT) at 443 and 555 nm over regions in Europe and South China. These areas are densely populated and highly polluted. The study uses the Bremen AErosol Retrieval (BAER) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data for AOT retrievals in the specified regions from October 1997 to May 2008. In order to validate the individually retrieved AOTs and the corresponding trends, AErosol RObotic NETwork (AERONET) level 2.0 data have been used. The retrieved AOTs were in good agreement with those of AERONET (0.79 ≤ R ≤ 0.88, 0.08 ≤ RMSD ≤ 0.13). The contamination of BAER aerosol retrievals and/or AERONET observations by thin clouds can significantly degrade the AOT and lead to statistically non-representative monthly-means, especially during cloudy seasons. Therefore an inter-correction method has been developed and applied. The "corrected" trends for both BAER SeaWiFS and AERONET AOT were similar having an average of relative error ~25.19 %. In general terms, negative trends (decrease of aerosol loading) were mainly observed over European regions, with magnitudes up to −0.00453 (−1.93 %) and −0.00484 (−2.35 %) per year at 443 and 555 nm, respectively. In contrast, the trend in Pearl River Delta was positive, most likely attributed to rapid urbanization and industrialization. The magnitudes of AOT increased by +0.00761 (+1.24 %) and +0.00625 (+1.15 %) per year respectively at 443 and 555 nm.

Citation: Yoon, J., von Hoyningen-Huene, W., Vountas, M., and Burrows, J. P.: Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China, Atmos. Chem. Phys. Discuss., 11, 20757-20792, doi:10.5194/acpd-11-20757-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share