
D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 11, 20267–20330, 2011
www.atmos-chem-phys-discuss.net/11/20267/2011/
doi:10.5194/acpd-11-20267-2011
© Author(s) 2011. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Sulfur dioxide and primary carbonaceous
aerosol emissions in China and India,
1996–2010
Z. Lu and D. G. Streets

Decision and Information Sciences Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439, USA

Received: 30 June 2011 – Accepted: 12 July 2011 – Published: 18 July 2011

Correspondence to: Z. Lu (zlu@anl.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.

20267

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

China and India are the two largest anthropogenic aerosol generating countries in the
world. In this study, we develop a new inventory of sulfur dioxide (SO2) and primary
carbonaceous aerosol (i.e., black and organic carbon, BC and OC) emissions from
these two countries for the period 1996–2010, using a technology-based methodology.5

Emissions from major anthropogenic sources and open biomass burning are included,
and time-dependent trends in activity rates and emission factors are incorporated in the
calculation. Year-specific monthly fractions for major sectors and gridded emissions at
a resolution of 0.1◦ ×0.1◦ distributed by multiple year-by-year spatial proxies are also
developed. In China, the interaction between economic development and environmen-10

tal protection causes large temporal variations in the emission trends. From 1996 to
2000, emissions of all three species showed a decreasing trend (by 9 %–17 %) due to
a slowdown in economic growth, a decline in coal use in non-power sectors, and the
implementation of air pollution control measures. With the economic boom after 2000,
emissions from China changed dramatically. BC and OC emissions increased by 46 %15

and 33 % to 1.85 Tg and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to
34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in 2010 due to the wide ap-
plication of flue-gas desulfurization (FGD) equipment in power plants. Driven by the
remarkable energy consumption growth and relatively lax emission controls, emissions
from India increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 201020

for SO2, BC, and OC, respectively. Monte Carlo simulations are used to quantify the
emission uncertainties. The average 95 % confidence intervals (CIs) of SO2, BC, and
OC emissions are estimated to be −16 %–17 %, −43 %–93 %, and −43 %–80 % for
China, and −15 %–16 %, −41 %–87 %, and −44 %–92 % for India, respectively. Sul-
fur content, fuel use, and sulfur retention of hard coal and the actual FGD removal25

efficiency are the main contributors to the uncertainties of SO2 emissions. Biofuel
combustion related parameters (i.e., technology divisions, fuel use, and emission fac-
tor determinants) are the largest source of OC uncertainties, whereas BC emissions
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are also sensitive to the parameters of coal combustion in the residential and industrial
sectors and the coke-making process. Comparing our results with satellite observa-
tions, we find that the trends of estimated emissions in both China and India are in
good agreement with the trends of aerosol optical depth (AOD) and SO2 retrievals
obtained from different satellites.5

1 Introduction

Atmospheric aerosols affect Earth’s energy budget by scattering and absorbing solar
radiation and by altering cloud properties and lifetimes. They also exert large influences
on public health, air quality, weather, atmospheric chemistry, hydrological cycles, and
ecosystems (e.g., Ramanathan and Carmichael, 2008; Streets et al., 2006, 2009).10

China and India are the two largest anthropogenic aerosol generating countries in the
world. In the past decade, they have been identified as the two hot spots in terms of
high aerosol optical depth (AOD) observed from space (Kharol et al., 2011; Prasad and
Singh, 2007; van Donkelaar et al., 2008). The major active components of aerosols in
these two countries are sulfate (of which the precursor is sulfur dioxide, SO2) and the15

primary carbonaceous aerosols black carbon (BC) and organic carbon (OC), together
accounting for more than 60 % of the AOD (Chin et al., 2009; Streets et al., 2009). From
a global perspective, anthropogenic SO2, BC, and OC emissions from China and India
contribute 30 %–40 % of current global emissions (Bond et al., 2004, 2007; JRC/PBL,
2010; Smith et al., 2011), and have received the greatest attention from compilers of20

emission inventories.
Trends in anthropogenic emissions are closely tied to economic growth and tech-

nology development. Over the past two decades, China and India have undergone
significant economic reform and have emerged as two of the world’s fastest devel-
oping economies. Even during 2008–2009, China and India were the two nations25

that were least affected by the global economic recession, maintaining GDP growth
rates of 9 % and 6 %, respectively (IEA, 2010). In response to this economic growth
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and the rapid expansion in industrial production, energy consumption has increased
accordingly. The share of energy use in China and India to the total world energy
consumption increased from about 10 % in 1990 to 21 % in 2008 (IEA, 2010). Mean-
while, environmental legislation in both countries has promoted the introduction of new
emission control and production technologies into the market, causing major changes5

in technology distributions as well as emission factors in relevant sectors. As a re-
sult, emissions of aerosols (and their precursors) have changed dramatically since the
1990s. Although some previous studies have reported SO2, BC, and OC emissions
from China and India, none of them have presented year-by-year trends with up-to-
date activity rates and new technology penetration rates, especially for the period after10

2005 (see Sect. 3.3.1). Therefore, the main purpose of this study is to use a consistent
methodology to develop a comprehensive inventory of SO2, BC, and OC emissions
from China and India for the period 1996–2010 on the basis of time-dependent activity
rates, technology penetration, emission factors, spatial proxies, monthly fractions, etc.

There are sometimes disagreements between observations and model simulations15

(which make use of bottom-up emission databases), especially for carbonaceous
aerosols, implying potentially large uncertainties in emission inventories. For example,
Tan et al. (2004) suggested that increases in the TRACE-P emission inventory of partic-
ulate carbon by 60–90 % would bring modeled results into agreement with observations
in China. Top-down estimates based on in-situ measurements of BC and CO during the20

INDOEX campaign yielded BC emissions of 2–3 Tg yr−1 for the South Asia continent
(Dickerson et al., 2002), higher than bottom-up inventories (<1 Tg yr−1). Ramanathan
and Carmichael (2008) estimated a global BC forcing of 0.9 W m−2 based on observa-
tion, three times higher than the average values of 0.3 W m−2 computed by bottom-up
inventories-based general circulation models. Therefore, quantification of emission un-25

certainties is as important as estimating central values. Streets et al. (2003) estimated
the uncertainty for each emitting subsector in the TRACE-P inventory by combining
the coefficients of variation (CV, the standard deviation divided by the mean) of the
contributing factors. The uncertainties were then added linearly or in quadrature based
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on the judgments of dependent or independent correlations between different emitting
subsectors. The confidence intervals (CIs) of this method are symmetric about the
mean because all the underlying parameters are assumed to be normally distributed.
However, the true probabilities of some parameters are asymmetric. Bond et al. (2004)
reviewed the emission characteristics of various combustion sources, and found that5

the lognormal distribution is more appropriate for emission factors of carbonaceous
aerosols. To obtain an asymmetric CI of each emitting source, they calculated the
upper and lower CIs separately by treating the one-sided CI in the underlying distri-
butions as uncertainties in a lognormal distribution and combining them in quadrature.
Recently, the Monte Carlo approach has been introduced into the emission inventory10

community to quantify the uncertainties of bottom-up emission estimates. It has been
gradually extended from an individual sector to multiple sectors in a country (Zhao et
al., 2011, and references therein). Taking advantage of combining uncertainties of nu-
merous parameters simultaneously and identifying the contribution of each parameter
to the output’s variance, we choose the Monte Carlo approach to evaluate the uncer-15

tainties of emissions estimated in this work.
The prime motivation of this study is to support the modeling work of the National

Aeronautics and Space Administration’s Goddard Space Flight Center (NASA/GSFC).
NASA/GSFC is tasked to conduct a hindcast investigation of multi-decadal changes of
atmospheric aerosols and their effects on surface radiation using the Goddard Chem-20

istry Aerosol Radiation and Transport (GOCART) model in combination with aerosol
data from satellite observations, ground-based measurements, and field experiments.
The study is focused on the time period of the satellite era from 1980 to 2010. In
our previous study, we have compiled a time-varying, comprehensive global emission
dataset of aerosols and their precursors for the GOCART model for the period 1980–25

2006 (Chin et al., 2009; Streets et al., 2006, 2009). This dataset is considered reliable
from 1980 to the mid-1990s, but thereafter updating is necessary to reflect new statis-
tical data availability and the transformation of technology. The current work reported
here addresses updated and extended emission datasets for China and India, two of
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the most important regions in the world. Subsequently, the work will be extended to all
world regions.

In this study, we estimate the SO2 and primary carbonaceous aerosol (i.e., BC and
OC) emissions from China and India for 1996–2010 using a detailed technology-based
approach. Section 2 documents the methodology and data sets used in this work.5

The results, including estimated emissions, uncertainty analysis, comparison with other
studies, gridded datasets, and seasonality of emissions are presented in Sect. 3. We
also use satellite observations to verify our emission trends, the discussion of which is
included in Sect. 4. Summary and conclusions are in Sect. 5.

2 Methodology and data sets10

2.1 Estimation of SO2 and carbonaceous aerosol emissions

2.1.1 General methodology

A technology-specific methodology is more appropriate and accurate for estimating
emissions from anthropogenic sources because of the wide variation in emission rates
for different types of processes and control technologies. In our previous work, we re-15

ported the development of detailed inventories of primary carbonaceous aerosol emis-
sions for China, Asia, and the world (Bond et al., 2004; Streets et al., 2001, 2004). In
particular, a detailed technology-based global inventory of primary BC and OC emis-
sions was reported for the year 1996 (Bond et al., 2004). Using the annual fuel-use
trends by world region and economic growth parameters included in the IMAGE model20

(National Institute for Public Health and the Environment, 2001), which was developed
for the Intergovernmental Panel on Climate Change (IPCC), we further extended the
1996 inventory to an annual trend for the period 1980–2000 and adapted the method-
ology to calculate annual SO2 emissions over the same period (Streets et al., 2006,
2008, 2009).25
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In this study, a similar approach is adopted. The emission sources are categorized
into five major sectors (i.e., power generation, industry, residential, transport, and open
biomass burning) and more than 120 sector/fuel(or product)/technology combinations,
including both fuel combustion and non-combustion sources. Total emission (Ei ,j ) for
species j and country i is given by the following equation:5

Ei ,j =
∑
l

∑
m

Ai ,l ,m

[∑
n

Xi ,l ,m,nEFi ,j,l ,m,n

]
(1)

where l , m, and n represent the sector, the fuel/product type, and the technology type
for combustion and industrial processes, respectively. A represents the activity rates,
such as fuel consumption and material production, and X represents the fraction of
fuel/product for a sector that is consumed by a specific technology (i.e.,

∑
X = 1 for10

each fuel/product and sector). EF is the net emission factor, and for sub-micrometer
carbonaceous aerosols, it is given by:

EFBC(or OC) =EFPM ·F1.0 ·FBC(or OC) ·F control (2)

where EFPM is the bulk particulate emission factor; F1.0 is the fraction of the emissions
with diameters smaller than 1 µm; FBC (or FOC) is the fraction of the fine PM that is BC15

(or OC); and Fcontrol is the fraction of fine PM that penetrates the control device. For
SO2 from fuel combustion sources, EF can be calculated by:

EFSO2
=2×S× (1−SR)× (1−ηk) (3)

where ηk is the removal efficiency of control technology k; S and SR are the sulfur
content of fuel and sulfur retention in ash, respectively. Based on this framework,20

we estimated the SO2 and carbonaceous aerosol emissions in China and India for
1996–2010 by incorporating the time-dependent trends in activity rates, technology
penetration, emission controls, coal sulfur content, etc.
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2.1.2 Uncertainty analysis

Due to the various underlying probability distributions of input parameters, the uncer-
tainties cannot be combined analytically. In this work, we use a Monte Carlo approach
to determine the uncertainties in the emission estimates. The procedure is to gener-
ate a set of values of the random variables in accordance with specified probability5

distributions, so that a series of corresponding solutions is obtained. The methods of
statistical estimation and inference can then be applied to such solutions to describe
their uncertainties. For Monte Carlo simulations, specifying the probability distributions
of the input parameters is a fundamental task. For parameters with adequate data
and reported distributions, we applied them directly in our model, and for parameters10

with limited or no observation data, probability distributions were based on the authors’
expert judgment. These will be discussed in detail in the following sections. All of
the input parameters (e.g., activity rates, emission factor determinants) and their corre-
sponding probability distributions were then incorporated into a Monte Carlo framework
with the Crystal Ball software and at least 6000 valid simulations were performed. Un-15

less specified otherwise, the term “uncertainty” in this article refers to a 95 % CI around
the central estimate (i.e., mean).

2.1.3 Activity rates

Energy and fossil fuel consumption data for most of the sector/fuel/technology com-
binations were from the International Energy Agency (IEA, 2010), which provides in-20

formation on 102 flows (e.g., imports, exports, and sectoral consumption) of 66 fuels.
We separated and aggregated these activities based on the emission characteristics
of each combustion process to fit the source types in our model (see Bond et al., 2004
for details). At present, 2008 is the latest year for which those data are available. Ac-
tivity rates were therefore extrapolated from 2008 to 2010 based on national fast-track25

statistics. If no up-to-date data are available, values from the most recent year are
used. Since probability distributions are not provided with official statistics, we applied
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normal distributions for all of the fossil fuel usage combinations. Generally, the uncer-
tainties were assumed as follows: 10 % for power generation, 20 % for industrial and
liquid fossil fuels in the residential sector, and 33 % for transport and coal use in the
residential sector. These values are based on a review of previous studies (Bond et al.,
2004; Streets et al., 2003; Smith et al., 2011; Zhao et al., 2011). It was reported that the5

IEA statistical data (edition 2004) of coal consumption in China may be underestimated
during 1996–2003, and are not recommended for use in emission inventory studies in
China during this period (Akimoto et al., 2006). However, IEA revised China’s histor-
ical coal consumption data in the current edition based on new economic surveys by
the China National Bureau of Statistics (NBS) (IEA, 2010). Hence, IEA coal consump-10

tion statistics of China are used in this work. For India, there are no official statistics
for coal consumption in the residential sector, and very little or no coal consumption
was assumed in several previous Indian emission inventories (Parashar et al., 2005;
Reddy and Venkataraman, 2002a). However, IEA reported that the residential sec-
tor contributes about 20–30 % of the non-power-generation coal use (IEA, 2010). For15

this reason, uncertainties of 50 % were assigned to both industrial and residential coal
consumption in India. In India, a high gasoline price leads to the practice of fuel adul-
teration (i.e., mixing kerosene into gasoline). The fraction of kerosene in fuel can reach
as high as 50 %, but the actual extent of this practice is unknown (Dickerson et al.,
2002; Patra and Mishra, 2000). Dickerson et al. (2002) assumed that all spark-ignition20

engines burn 2/3 gasoline and 1/3 kerosene. Using the same assumption, we multi-
plied the on-road gasoline consumption in India by 1.5, and assigned an uncertainty of
50 % to it.

Historical biofuel consumption in China and India were obtained from other data
sources. For China, the provincial consumption of biofuel was derived from the China25

Energy Statistical Yearbook (CESY) (NBS, 1998–2010), and the consumption patterns
in rural areas were taken from Zhang et al. (2009a). For India, previous estimates of
biofuel consumption contained large uncertainties due to the small sample sizes and
outdated energy surveys carried out during 1985–1992 (e.g., Bond et al., 2004; Reddy
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and Venkataraman, 2002b; Streets et al., 2003; Yevich and Logan, 2003; Sinha et
al., 1998). To address these drawbacks, Habib et al. (2004) developed a new method
based on food consumption statistics and the specific energy requirement for food
preparation, and estimated Indian biofuel consumption for cooking in year 2000. In this
study, we followed a similar methodology, and extended it to an annual trend for the5

period 1996–2010. The probability distribution of biofuel use is probably not symmet-
ric. Yevich and Logan (2003) examined both the range and the standard deviation of
published per capita biofuel usage, and assessed uncertainties of −40 % to +95 % for
biofuel consumption in Asia. Habib et al. (2004) estimated that the 95 % CI of total bio-
fuel consumption in India is −35 %–54 % about the mean with lognormal distribution.10

Therefore, we generally assumed lognormal distributions for biofuel use for both China
and India. The uncertainties (upper 95 % CI about the mean) are 46 %, 74 %, and 86 %
for Indian fuelwood, dung-cake and crop waste, respectively (Habib et al., 2004), and
80 % for biofuel use in China (author’s judgment).

Four types of open biomass burning are included: tropical forests, extra-tropical15

forests, savanna/grassland, and crop residue burning in fields. The national dry
matter burned of forests and grassland were zonally aggregated according to the
country boundaries of China and India from the Global Fire Emissions Database
(GFED) version 3.1, which calculates fire emissions based on a revised version of
the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved20

satellite-derived estimates of area burned, fire activity, and plant productivity (van der
Werf et al., 2010). The database provides the first global assessment of the contribu-
tions of different sources to total global fire emissions at 0.5◦ ×0.5◦ spatial resolution
for the 1997–2009 with a monthly time step. For years 1996 and 2010, we used aver-
age values of data between 1997 and 2009. Regarding the probability of open burning25

of each type of fire, normal distributions with year-specific uncertainties provided in
the GFED v3.1 were assumed. Although GFED v3.1 contains fires from agricultural
waste burning, these estimates are likely a lower bound, since the method for measur-
ing burned area can only detect the relatively large fires (van der Werf et al., 2010).
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Therefore, we adopted a different approach for estimating the burning of crop residue
in fields, using the product of the yield of different crops, the crop-to-residue ratios, and
the fraction of crop burnt in the field (Cao et al., 2006; Sahai et al., 2010; Venkatara-
man et al., 2006; Wang and Zhang, 2008). Crop production statistics were obtained
from the China Agricultural Yearbook (Ministry of Agriculture of China, 1997–2009) and5

the India Agriculture Statistics at a Glance (Ministry of Agriculture of India, 1996–2010)
for China and India, respectively. Crop-to-residue ratios and crop burnt fraction in the
field were from Cao et al. (2006) and Wang and Zhang (2008) for China, and Sahai et
al. (2010) and Venkataraman et al. (2006) for India. Derived from Sahai et al. (2010)
and Zhao et al. (2011), normal distributions with uncertainties of 40 % were assumed10

for crop waste burned in fields.
We followed Bond et al. (2004)’s method to estimate open waste burning of the two

countries during 1996–2010. Total open waste combustion was calculated by multi-
plying per capita waste generation rates, urban populations (assume waste generation
in rural areas is low in developing countries because goods are inherently recycled),15

and fraction of waste burned in urban areas. We acknowledge that our estimates of
open waste burning are quite uncertain, and assign uncertainties of 200 % to these es-
timates (Bond et al., 2004). For non-combustion emissions, industrial production levels
were obtained from various sources, such as the China Industry Economy Statistical
Yearbook (NBS, 1997–2010a) and the Handbook of Statistics on the Indian Economy20

(Reserve Bank of India, 2010). We applied normal distributions with uncertainties of
20 % to these statistics based on expert judgment.

Figure 1 shows annual energy consumption by sector and fuel type in China and
India between 1996 and 2010. Quantities of fuels were converted into energy equiv-
alents using net calorific values supplied in IEA Energy Statistics (IEA, 2010) and the25

GAINS model (Klimont et al., 2009). Energy consumption in China remained relatively
stable during 1996–2000 and then increased dramatically from 43.3 EJ to 105.5 EJ dur-
ing 2000–2010, with an annual growth rate of 9.3 %. On average, the highest sectoral
consumption is in industry (39 %), followed by power plants (29 %), residential (24 %),
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and transportation (8 %). Different from China, the energy consumption in India con-
tinuously increased from 17.8 EJ in 1996 to 29.3 EJ in 2010, with an annual growth
rate of 3.6 %. Industry, power plants, residential, and transportation contribute 22 %,
31 %, 39 %, and 8 % of the national energy consumption, respectively. Figure 1 also
shows the amount of biomass burned in the two countries. Obviously, open biomass5

burning has significant interannual variability. The average dry mass burned in China
and India during 1996–2010 is 21.6 Mg yr−1 and 32.0 Mg yr−1 for forest and grassland,
and 130.5 Mg yr−1 and 91.2 Mg yr−1 for agricultural waste.

2.1.4 Technology divisions

As shown in Eq. (1), we used parameter X to divide the sector/fuel (or product) com-10

binations into different technologies. This procedure provides the ability to estimate
emissions dynamically, because the change of emission factors over time can be rep-
resented as a change of technology penetration. This is very important for rapidly
developing countries like China and India since new technologies are continuously
coming into the market, causing dramatic changes in emission factors. For fuel use in15

the residential, power generation, and industry sectors, the application rates of differ-
ent combustion technologies (or processing technologies for industrial products) and
the distribution of emission control devices during 1996–2010 were compiled from a
wide range of literature, such as Lei et al. (2011), Klimont et al. (2009), Lu et al. (2010),
Streets et al. (2003), Reddy and Venkataraman (2002a, b), and Zhao et al. (2011).20

For the transportation sector, technologies refer to different vehicle types with different
emission standards. In the present work, we classified on-road vehicles into four types,
including light-duty gasoline vehicles, light-duty diesel vehicles, heavy-duty diesel ve-
hicles, and motorcycles. Time-dependent distribution of oil consumption between dif-
ferent vehicle/standard types was derived from He et al. (2005) and Wang et al. (2006)25

for China, and the GAINS-Asia model (Klimont et al., 2009) for India. For off-road
vehicles and machinery, we directly tabulated the fuel use of ships, railroad locomo-
tives, and agricultural vehicles from IEA statistics. We also took into account the effect
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of superemitters of each vehicle type, since they could contribute a large fraction of
carbonaceous aerosol emissions to the transportation sector (Bond et al. 2004, and
references therein), and relevant information was derived from the Speciated Pollutant
Emission Wizard (SPEW)-Trend model (Yan et al., 2011).

It is difficult to directly quantify the uncertainties of technology divisions because (1) it5

is almost impossible to obtain the probability distribution and CI of X , and (2) the tech-
nology fractions in each fuel/product sector are highly correlated and should meet the
constraint that

∑
X = 1. Alternatively, Bond et al. (2004) assigned the uncertainties in

technology divisions by increasing the fraction of higher-emitting technologies so that
they contribute an additional 10 % of the total fraction, and decreasing the fraction of10

lower-emitting technologies by an equal amount. Here, we modified this method to
generate random variables of technology fractions. For fuel/product with two technol-
ogy divisions (of which fractions are X1 and X2), a uniform distribution was assumed to
X1 in the range of ±0.1 about the mean (i.e., [X1,mean−0.1, X1,mean+0.1]), while X2 was
calculated as 1−X1. For fuel/product with three or more divisions (of which fractions15

are X1 −Xn), we assumed uniform distributions in the range of ±0.1 about the mean
for both the highest-emitting (i.e., [Xhigh,mean−0.1, Xhigh,mean+0.1]) and lowest-emitting
technology (i.e., [Xlow,mean −0.1, Xlow,mean+0.1]), and simply determined the variation
ranges of the other technology fractions as ±(1−Xhigh −Xlow −

∑
Xother,mean)/(n−2). If

negative numbers were generated for any combination, this series of random variables20

was discarded. In addition, when we believe our understanding of a certain technology
division is more uncertain, we alter the fraction by 0.3 instead of 0.1 (e.g., for coke
making with/without controls and superemitter fractions in a vehicle fleet).

2.1.5 Emission factors

As shown in Eq. (3), the emission factor of SO2 is dependent on the fuel sulfur con-25

tent (S) and the sulfur retention ratio in ash (SR). For China, S values of coal and oil
consumed by combustion sources were derived from our previous work and recent lit-
erature (Klimont et al., 2009; Ohara et al., 2007; Zhao et al., 2008; Streets et al., 2003,
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2006; Lu et al., 2010). The national average S of coal in China was 1.10 % in 1996,
1.08 % in 2000, and 1.02 % in 2005. We used interpolation values to represent S in
each year during 1996–2005, and assumed the sulfur contents did not vary after 2005,
because no reliable data are available. The S of oil consumed in road transportation
in China was determined from the national standards and the GAINS model, and it de-5

clined from 0.05 % to 0.005 % for gasoline and from 0.28 % to 0.02 % for diesel during
1996–2010. For India, the S values of fossil fuels were based on the data reported by
Reddy and Venkataraman (2002a) and the GAINS model (Klimont et al., 2009). The
mean S of coal in India was determined to be 0.55 %, and that of gasoline and diesel
for road transportation decreased from 0.18 % to 0.08 % and from 0.47 % to 0.05 %10

between 1996 and 2010, respectively. Regarding the probability distributions of S, we
assumed normal distributions with uncertainties of 20 % for all fossil fuels (Smith et
al., 2011; Streets et al., 2003). The SR ratio for coal-fired power plants in China was
assumed to be 10 % with beta distributions (95 % CI: 7.5 %–14 %) based on field mea-
surements by Zhao et al. (2011). For other sectors, SR ratios were set at 5 %–45 %,15

depending on the process type, combustion technology, and coal type. Due to the lack
of information on field measurements, uniform distributions were assumed in the range
of minimum and maximum values reported in the literature (Klimont et al., 2009; Ohara
et al., 2007; Reddy and Venkataraman, 2002a; Smith et al., 2011; Streets et al., 2003;
Zhao et al., 2011). The SO2 emission factors of biofuel combustion were based on20

the measurements by Habib et al. (2004), and we assumed normal distributions with
uncertainties provided in their work. For SO2 emission factors of industrial processes,
values in the GAINS model were used and normal distributions with uncertainties of
40 % were applied based on the authors’ judgment (Smith et al., 2011; Streets et al.,
2003).25

The emission factor of SO2 is also strongly dependent on the application rate and
the removal efficiency of flue-gas desulfurization (FGD) devices. FGD application rates
of power plants in China were estimated by the ratio of average FGD installed capacity
to the average capacity of power plants in each year. Relevant data were obtained

20280



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

from the China Ministry of Environmental Protection (MEP) and the China Electric
Power Yearbook (State Electricity Regulatory Commission, 2000–2009). Ideally, the
SO2 removal efficiency of FGD can reach 95 % (Zhao et al., 2011). However, actual
operations rarely reach this (Xu et al., 2009). In the present work, symmetrically trian-
gular distributions were assumed for the actual removal rate of FGD. We set the official5

data as the most likely value, and the ideal value of 95 % as the maximum to build
the triangular distribution function. For example, the official data from the China MEP
reported that 73.2 % of SO2 was removed from coal-fired power plants equipped with
FGD in 2007 (MEP, 2009). Thus, the mean value of removal efficiency of FGD in 2007
was 73.2 % with a triangular distribution in the range of 51.4 % to 95 %. For Indian10

power plants, the application rate of FGD is very low (<2 %) (Reddy and Venkatara-
man, 2002a) since Indian coal has a much lower sulfur content. Therefore, the effect
of FGD on SO2 emissions from India was not considered in this study.

Emission factor determinants of BC and OC for each of the sectors, fuels, and tech-
nologies in Eq. (2) were updated in collaboration with Professor Tami Bond on the basis15

of their previous work (Bond et al., 2004). In addition, we introduced minor adjustments
after reviewing some new country-specific measurements of emission factors for bio-
fuel combustion in India (Parashar et al., 2005; Venkataraman et al., 2005; Habib et
al., 2008) and China (Cao et al., 2006; Li et al., 2009), and residential coal combustion
in China (Chen et al., 2009; Zhi et al., 2008). Regarding the uncertainties of emission20

factor determinants, Bond et al. (2004) reviewed the BC and OC emission characteris-
tics of various combustion sources comprehensively, and incorporated the information
(central estimate, lower and upper bounds, etc.) of each parameter into a program
called Speciated Particulate Emissions Wizard (SPEW). For the bulk particulate emis-
sion factors (EFPM), Bond et al. (2004) found that the lognormal distribution provides25

a reasonable fit to the measured data. Hence, we assumed EFPM is lognormally dis-
tributed with 95 % CI at the lower and upper bonds provided in SPEW. For other pa-
rameters (F1.0, FBC, FOC, and Fcontrol), uniform distributions in the range of lower and
upper bonds provided in SPEW were assumed due to the limited data availability.
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Andreae and Merlet (2001) critically reviewed and evaluated the emission factors of
trace gases and aerosols from open biomass burning. Since not enough data are avail-
able, uncertainties of SO2, BC, and OC emission factors for open burning of forests,
grasslands and agricultural wastes were characterized by the means and standard de-
viations of their data, assuming a normal distribution.5

2.2 Spatial allocation method

We used a “top down” approach to transform country-level emissions to gridded
datasets. Sectoral emissions (excluding emissions from power plants and forest and
savanna burning) were first allocated to each province (or state), and then distributed
on a 0.1◦×0.1◦ grid using appropriate year-by-year spatial proxies. For the first step,10

emission information at provincial (or state) level was obtained from Lu et al. (2010)
and Lei et al. (2011) for China, and the GAINS model (Klimont et al., 2009) for India.
We generated year-specific allocation factors at a resolution of a 0.1◦×0.1◦ by using
various types of Geographical Information System (GIS) datasets:

1. total population data were extracted from the LandScan Global Population Data15

Set developed by Oak Ridge National Laboratory for the period 2004–2008
(ORNL, 2009), and from the History Database of the Global Environment (HYDE)
developed by the Netherlands Environmental Assessment Agency for the period
before 2004 (Goldewijk et al., 2011);

2. urban and rural population data were developed based on the total population20

datasets and information from the Global Rural-Urban Mapping Project (GRUMP)
(CIESIN et al., 2004);

3. cropland cover data during 1996–2007 were obtained from an updated version
of the Global Cropland Dataset (Ramankutty and Foley, 1999);

4. road networks were extracted from the Digital Chart of the World (DMA, 1993);25
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5. China’s industrial GDP at county level during 2000–2008 were obtained from the
China County Statistical Yearbook (NBS, 2001–2009).

The allocation rules are:

1. road networks for on-road transportation emissions,

2. cropland cover for emissions from agricultural waste burning and off-road tractors,5

3. China’s industrial GDP by county for industrial emissions in China,

4. EDGAR 4.1 (JRC/PBL, 2010) industrial gridded emissions for industrial emis-
sions in India,

5. rural population for residential biofuel combustion,

6. urban population for emissions from residential coal-fired boilers and open waste10

burning, and

7. total population for all other area sources.

It should be noted that assessing the uncertainty in the spatial allocation is beyond the
scope of this study and was not considered.

Emissions from biomass burning and coal-fired power plants were treated separately15

in this study. For open biomass burning from forest and savanna, gridded data from
GFED v3.1 (van der Werf et al., 2010) were directly used. For China’s coal-fired power
sector emissions, year-by-year gridded data were obtained from our collaborators at
Tsinghua University (Zhang et al., 2009b; Zhao et al., 2008). They were generated
from a detailed, unit-based inventory specifically for China’s power sector, and all power20

generation units with capacity larger than 300 MW (∼400 units) were identified as large
point sources (LPSs), while other plants were treated as area sources. Similar to
China, we also developed a detailed, unit-based inventory for India’s power sector.
The unit-level information was derived from various series of the Performance Review
of Thermal Power Stations (Central Electricity Authority, 2000–2010), and all power25

generation units with capacity larger than 20 MW (∼500 units) were included.
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2.3 Estimation of seasonal variations

Year-specific monthly fractions for SO2, BC, and OC emissions from each major sector
during 1996–2010 were developed. For the residential sector, we followed the same
methodology used in the TRACE-P inventory (Streets et al., 2003), assuming a depen-
dence of stove operation on provincial (or state) monthly mean temperatures, to gener-5

ate monthly emissions. For the other sectors, monthly fractions were determined from
monthly activity data of power generation, industrial GDP (or industrial production in-
dex), sulfuric acid and coke production, volume of passenger and freight transported by
ship, railway, and aviation, etc. (Reserve Bank of India, 2010; Central Statistical Orga-
nization, 2000–2010; NBS, 1997–2010b, c). The monthly emissions of open biomass10

burning from forest and savanna were obtained directly from GFED v3.1 (van der Werf
et al., 2010), and those from agricultural waste burning were determined based on the
work of Wang and Zhang (2008) for China and Venkataraman et al. (2006) for India.

2.4 Data sets of SO2 and AOD

SO2 and AOD satellite data are used to compare with our emission estimates. The SO215

satellite data are from the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY, aboard the European Space Agency’s ENVISAT satellite,
launched in March 2002) and the Ozone Monitoring Instrument (OMI, aboard NASA’s
EOS/Aura satellite, launched in July 2004). Appropriate air-mass factors (AMF) are
required to convert the retrieved slant columns of SO2 from both instruments into20

vertical columns. The value of AMF is dependent on the satellite viewing geometry,
the SO2 vertical distribution, the reflectivity (albedo) of the earth’s surface, the total
column ozone, aerosols, clouds, etc. (Krotkov et al., 2008; Lee et al., 2009). For
SCIAMACHY, we used the monthly level-3 product with grid cells of 0.25◦×0.25◦ from
the Support to Aviation Control Service (SACS, http://sacs.aeronomie.be/index.php),25

for which the AMF was pre-calculated with the radiative transfer model LIDORT. For
OMI, the planetary boundary layer (PBL) SO2 data in the OMSO2 Level-2G products
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were used (a fixed global AMF of 0.36 is applied), and they were acquired from
NASA’s Goddard Earth Sciences Data and Information Services Center (GES-DISC)
at http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omso2g v003.shtml. Daily re-
trievals were first filtered to remove data with large solar zenith angle (>70◦), or rel-
atively high radiative cloud fraction (>0.3) and terrain height (>1.5 km), or anoma-5

lous scenes, and then averaged at 0.5◦×0.5◦ resolution to reduce the noise (Nicko-
lay Krotkov, personal communication). Annual mean SO2 column amounts were then
calculated from the daily data for the years 2005–2010.

AOD satellite retrievals are from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and Multi-angle Imaging Spectroradiometer (MISR). The MODIS sen-10

sors are aboard both the NASA EOS/Terra and EOS/Aqua satellites, which were
launched in December 1999 and May 2002, respectively. The MODIS AOD re-
trieval is based on scene brightness over dark surfaces, using empirical relation-
ships in the spectral variation in surface reflectivity (Remer et al., 2005). The AOD
data have discontinuities in some mesh grid points, mainly in middle and high lati-15

tudes (i.e., bright land surfaces such as the desert and snow-covered surfaces), which
were excluded in the analysis. Besides MODIS, the EOS/Terra satellite also has the
MISR instrument on board. It uses observed differences in the reflective properties
of Earth’s surface with nine viewing angles to retrieve AOD (Kahn et al., 2005). In
this study, the monthly level-3 products of Terra-MODIS (v5.1, 550 nm), Aqua-MODIS20

(v5.1, 550 nm), and MISR (v31, 555 nm) are used, and they were acquired using
the NASA’s GES-DISC Interactive Online Visualization and Analysis Infrastructure
(Giovanni) (http://disc.sci.gsfc.nasa.gov/giovanni). Global coverage in the absence of
clouds is obtained in one to two days for MODIS and in six to nine days for MISR.
Horizontal resolutions are 1◦×1◦ and 0.5◦ ×0.5◦ for MODIS and MISR, respectively.25

For the purpose of identifying the months in which anthropogenic emissions have the
greatest impact on AOD, and obtaining the conversion factors between AOD and emis-
sion mass (see Sect. 4.1 in detail), we use results from the GOCART model updated
to version c3.1 simulation for 2000–2007 (Chin et al., 2009) (available on Giovanni).
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The GOCART model simulates physical and chemical processes of major tropospheric
aerosol components, including sulfate, dust, BC, OC, and sea salt, as well as the pre-
cursor gaseous species of SO2 and dimethylsulfide (DMS). It uses the assimilated
meteorological fields of the Goddard Earth Observing System Data Assimilation Sys-
tem (GEOS DAS) version 4, with a spatial resolution of 1◦ latitude by 1.25◦ longitude,5

and 30 vertical sigma layers. The annual anthropogenic emissions of SO2, BC, and
OC are based on our previous work (Bond et al., 2004; Streets et al., 2006, 2009), and
time-varying emissions from aircraft and ships, biomass burning, biogenic, oceanic and
volcanic sources, wind-blown dust, sea salt, and so on are also included. AOD in the
model is determined from the dry mass concentrations and mass extinction efficien-10

cies which are calculated from Mie theory on the basis of size distributions, refractive
indices, and hygroscopic properties of individual aerosol types.

3 Emissions of SO2, BC, and OC from China and India during 1996–2010

3.1 Emissions overview

Tables 1 and 2 summarize SO2, BC, and OC emissions by major emitting sector and15

fuel type in China and India, respectively, during 1996–2010. The net emission factors
are shown in Tables S3 and S4 in the Supplement.

3.1.1 SO2

Figure 2a shows the annual trend of SO2 emissions and its distribution among sec-
tors and fuel types in China. Generally, the trend can be divided into three distinct20

time periods. During 1996–2000, SO2 emissions decreased by 13 % from 24.3 Tg to
21.2 Tg. This is consistent with the estimates of previous work (Ohara et al., 2007;
Smith et al., 2011; Streets et al., 2006, 2008), and the decline is attributed to the com-
bination of a slowdown in economic growth caused by the Asian economic crisis, the
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fundamental restructuring of the Chinese industrial economy, a decline in coal use in
the residential and industrial sectors, and a reduction in the average sulfur content of
coal burned (Ohara et al., 2007; Streets et al., 2003). After 2000, SO2 emissions in
China increased dramatically by 61 % from 21.2 Tg in 2000 to 34.0 Tg in 2006, with an
annual growth rate (AGR) of 8.2 %. This growth rate is slightly higher than our previous5

estimate of 7.3 % (Lu et al., 2010), which was calculated from official Chinese energy
statistics, but is still in good agreement with values reported in other bottom-up inven-
tories (6.3 %–9.9 %) (Klimont et al., 2009; Ohara et al., 2007; Smith et al., 2011; Zhang
et al., 2009b) and derived from satellite constraints (6.2 %–9.6 %) (van Donkelaar et
al., 2008). The dramatic change during this period was driven by the rapid increase of10

energy consumption (87 % growth, Fig. 1a) due to the economic boom (99 % growth
in GDP). Although GDP and energy consumption in China were still increasing after
2006, national SO2 emissions began to decrease, due to the application of FGD tech-
nology and the phase-out of small, high-emitting power generation units (Lu et al.,
2010) During 2000–2010, the average FGD penetration rate in China increased from15

1 % to 78 %, and the net emission factor of coal-fired power plants decreased by 76 %
correspondingly (Table S3 in the Supplement). By the end of 2010, FGD penetration of
power plants had risen to 83 %, which is estimated to eliminate about 19.4 Tg SO2 in
that year. In terms of fuel-type and sectoral contribution, coal combustion was the sin-
gle largest contributor (89 %–93 %). Emissions from the power sector increased from20

37 % in 1996 to 51 % in 2004, and later decreased to 21 % in 2010. The contribution of
industry decreased from 47 % in 1996 to 38 % in 2002, but increased to 66 % in 2010.
The share of the residential sector slightly varied between 6 % and 13 %. The ongoing
tension between two forces – economic development and environmental protection –
causes the emission trends to be decidedly non-linear, as the government imposes25

new measures to address one aspect of air pollution or another, and it is important to
reflect these significant changes from year to year in emissions and impacts analysis.

The temporal evolution of SO2 emissions from India and its sectoral and fuel-type
distribution between 1996 and 2010 is shown in Fig. 2b. In contrast to the situation
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in China, anthropogenic SO2 in India shows a continuously increasing trend, which
reflects rapid economic and social development driven by growing fossil-fuel use and
relatively lax emission controls. The national emissions increased by 70 % from 5.2 Tg
in 1996 to 8.8 Tg in 2010 with an AGR of 3.9 %. Power plants are the main sources of
SO2 (contributing 49 % in 1996 and 59 % in 2010 to the total emissions), followed by5

industry (∼34 %), residential (∼6 %), and transportation (∼3 %). Compared to a 35 %
increase in emissions in other sectors, SO2 emission from power plants increased by
105 %, from 2.6 Tg in 1996 to 5.2 Tg in 2010, which can be viewed in the context of
a 117 % increase of total thermal-based electricity generation during the same period.
Although the contribution of emissions from coal combustion (∼69 %) is smaller than10

that of China (>89 %), it dominates the growth of national emission. During 1996–
2010, SO2 emissions from coal combustion increased by 3.4 Tg, accounting for 93 %
of the national growth.

3.1.2 BC

Figure 3 displays BC emissions by sector and by fuel type in China and India. Although15

both SO2 and BC are mainly from the process of fuel combustion, and the trends
between SO2 and BC emissions are similar to some extent in China and India, the
emission distributions among sectors and fuel types are quite different. First, BC is
produced mostly from incomplete combustion in small, low-temperature facilities and
not power plants or large industrial facilities, whereas SO2 emissions are closely related20

to the total coal and oil use. Second, a significant amount of BC is produced from
biofuel combustion and open biomass burning, whereas both of these generate little
SO2.

In China, the trend of BC emissions is controlled by the balance between decreas-
ing net emission factors for major sources and increasing activity rates. To improve25

air quality, the Chinese government has issued a series of emission standards for PM
emitting sources during 1996–2010, and a large number of emission reduction mea-
sures have been implemented. These include: replacing cyclones and wet scrubbers
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on power and industrial boilers with electrostatic precipitators and fabric filters; increas-
ing the market share of boilers with large capacity; converting residential coal use from
raw coal to briquettes, and introducing cleaner fuels like LPG and electricity; phasing
out beehive brick kilns and indigenous coke production facilities; implementing vehi-
cle emission standards from Euro I to Euro IV, etc. (Chen et al., 2009; Lei et al.,5

2011; Zhang et al., 2009b). As a result, these measures caused dramatic changes
in the technology distribution as well as the emission factors in the relevant sectors.
For example, the mean BC emission factors of coal consumed in the industrial and
residential sector decreased by 64 % and 34 %, respectively, during 1996–2010 (Ta-
ble S3 in the Supplement). The decrease of emission factors for major BC sources10

(except for biofuel combustion), along with the decrease of industrial and residential
coal consumption, is the main reason for a 17 % BC emission decline in China during
1996–2000 (Fig. 3a). Although the emission factors for major BC sources were still
decreasing after 2000, BC emissions in China increased by 46 % from 1.26 Tg in 2000
to 1.85 Tg in 2010. This was driven by rapidly increasing energy consumption (144 %15

growth, Fig. 1a), industrial production (e.g., 292 % growth in coke production), and ve-
hicle population (366 % growth). Examining the sectoral distributions, the residential
sector is the main source of BC (51 %±3 %). The contribution of the industry sector
decreased from 35 % in 1996 to 27 % in 2010, whereas that of transportation increased
from 6 % to 15 %.20

Although there were some PM reduction measures in India during 1996–2010 (e.g.,
replacing traditional cookstoves with improved cookstoves, implementing new emission
standards for vehicles, etc.), the progress was not as fast as in China. As shown in
Table S4 in the Supplement, the mean emission factors of major BC sources only have
small changes over time. Therefore, the trend of BC emissions in India is governed25

by the trend of energy consumption. Figure 3b shows that BC emissions from India
increased steadily from 0.72 Tg in 1996 to 1.02 Tg in 2010, with an AGR of 2.5 %.
Biofuel combustion was the dominant contributor in India (45 %–52 %), followed by coal
(22 %–29 %) and oil (14 %–17 %). The distribution of BC emissions among different
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sectors was relatively stable during 1996–2010, at about 57 %, 22 %, 11 %, 8 %, and
2 % for residential, industry, transportation, agricultural waste burning, and forest and
savanna burning, respectively.

3.1.3 OC

Similar to the BC trend for China, the anthropogenic OC emissions (i.e., excluding5

forest and savanna burning) decreased from 3.20 Tg in 1996 to 2.82 Tg in 2000, but
then increased to 3.91 Tg in 2010 (Fig. 4a). The residential sector (69 %), especially for
biofuel combustion (56 %), is the dominant contributor of anthropogenic OC emissions
in China. With the rapid increase of vehicle population and continuous decrease of
emission factor in industrial coal use, the share of transportation increased from 3 % in10

1996 to 7 % in 2010, and that of industry decreased from 16 % to 10 %. Open biomass
burning of agricultural waste is another large source, accounting for about 13 % of the
anthropogenic OC emissions. For India, anthropogenic OC increased by 38 % from
1.88 Tg to 2.58 Tg during 1996–2010 (Fig. 4b). The highest sectoral contributor is from
the residential sector (75 %, in which biofuel combustion accounts for 96 %), followed15

by agricultural waste burning (14 %), industry (8 %), and transportation (3 %).
We note a significant year-to-year variation in OC emissions from open biomass

burning of forest and savanna, which is determined by the extent of fires, and is driven
largely by precipitation amounts and soil moisture content. OC emissions from this
source type accounted for 2 %–11 % and 4 %–18 % of the total emissions in China and20

India, depending on the year. As shown in Fig. 4, 2003 was a year of extensive open
biomass burning in China, while 1999 was such a year for India. This variability is the
main cause of the interannual fluctuations in the trend of total OC emissions in China
and India.
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3.2 Uncertainties

Using the Monte Carlo approach, we provide 95 % CIs for all the model outputs. The
uncertainty ranges of SO2, BC, and OC emissions by major sector and fuel type are
shown in Tables S1 and S2 in the Supplement for China and India, respectively. The
net emission factor uncertainties by sector and fuel type are listed in Tables S3 and5

S4 in the Supplement. Since SO2 emission is largely dependent on sulfur contents
and activity rates of fossil fuels, it has lower uncertainty than BC and OC emissions
which are strongly influenced by combustion condition. The average uncertainties of
SO2, BC, and OC emissions were estimated to be −16 % to 17 %, −43 % to 93 %, and
−43 % to 80 % for China, and −15 % to 16 %, −41 % to 87 %, and −44 % to 92 % for10

India. The right subgraphs of Figs. 5 and 6 display the emission distributions of each
species in the year 2010, according to Monte Carlo simulations. The distribution of
SO2 is approximately symmetric since most of the relevant parameters were assumed
to have normal or uniform distributions. BC and OC distributions are asymmetric, re-
flecting our lognormal treatment of emission factors and biofuel consumption. Table 315

shows the average contribution of each sector to total uncertainties during 1996–2010.
Power plants and industry contribute more than 83 % of the SO2 emission uncertainty
in both China and India. The residential sector is the single largest contributor to uncer-
tainty of carbonaceous aerosol emissions (>60 % for BC and >67 % for OC), followed
by industry, open biomass burning, transportation, and power plants. Examining the20

interannual variation of the uncertainty for all three species in both countries, 95 % CIs
have no obvious change except for BC emissions in China (Tables S1 and S2 in the
Supplement). The significant decrease of China’s BC uncertainty over time can be ex-
plained by the decreasing share of residential and industry emissions, which are highly
uncertain.25

We also conducted sensitivity analysis of the outputs. As shown in Fig. 7, the results
are expressed as the contribution of each parameter in the model to the total variance
of emission estimates. In this study, more than 600 input parameters are included in the

20291

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Monte Carlo framework. We therefore aggregated them into several major parameters
or fuel/usage combinations. For example, the combination “oil” in Fig. 7a and b includes
the contributions of sulfur contents and fuel use of all kinds of oils; the combination
“Wood/RE” in Fig. 7c–f includes the contributions of technology divisions, fuel use, and
all emission factor determinants of fuelwood combustion in the residential sector.5

For SO2 emissions in China, hard-coal related parameters contributed to more than
96 % of the variances before 2005 (Fig. 7a). The proportions of sulfur content, fuel
use, and sulfur retention in ash of hard coal were 61 %, 27 %, and 10 %, respectively.
After 2005, SO2 emissions were sensitive to the FGD removal efficiency, the shares
of which in the variances were in the range of 1 % to 16 %, depending on the year.10

As we mentioned previously, FGD devices were widely installed during China’s 11th
Five-Year Plan period (2006–2010). However, the actual operation of FGD equipment
is unknown. It was reported that China’s official data overestimated the actual perfor-
mance of SO2 scrubbers before 2007 (Xu et al., 2009; Xu, 2011). For example, official
data announced that 73.2 % of SO2 was removed from coal-fired power plants that15

had FGD in 2007 (MEP, 2009), whereas this rate was found to be only 64.1 % in the
coastal province of Jiangsu, which has a relatively good track record on environmental
protection (Xu et al., 2009). Due to the sharply expanded FGD installation and low
FGD operation, the parameter “FGD removal efficiency” played an increasingly impor-
tant role in the uncertainty of national emissions during 2005–2007 (Fig. 7a). However,20

the situation has changed since 2007. To motivate the use of FGD equipment, the
Chinese government has taken several measures since 2007, including the installation
of continuous monitoring systems in power plants with FGD, the implementation of a
premium/penalty scheme of electricity price that varies with the FGD’s operation, and
severe penalties for the non-operation of FGD (Xu, 2011). These new policy incentives25

were reported to be effective. For example, also in Jiangsu province, FGD devices
were found to be operating with SO2 removal efficiencies of over 90 % for more than
90 % of the time after July 2007 (Xu et al., 2009). Most FGD devices in China op-
erate properly in 2009 based on a series of field interviews conducted by Xu (2011).
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Therefore, the importance of FGD removal efficiency to the emission uncertainty is re-
ducing after 2007 (Fig. 7a). Similar to China, hard-coal related parameters are also the
largest contributors to the SO2 emission variances in India (>89 %, Fig. 7b), and their
contributions are continuously increasing over time due to the increasing share of hard
coal in the Indian energy structure (Fig. 1b).5

The contributions of major fuel/usage combinations to variances of carbonaceous
aerosol emissions in China and India are shown in Fig. 7c–f. For BC emissions in
China, combustion of residential agricultural waste, residential fuelwood, residential
coal, industrial coal, and coke-making process are the largest contributors, together
comprising 91 %–97 % of the variances (Fig. 7c). The shares of fuel/usage combina-10

tions are changing over time, reflecting the changes of technology divisions, emission
characteristics, and activity rates. For example, the share of indigenous coking facili-
ties, the emission characteristics of which are highly uncertain, decreased from 50 % to
0 % during 1996–2010. As a result, the contribution of the coke-making process to the
variance has decreased from about 15 % in 1996 to 2 % in 2010. Similarly, the contri-15

bution of residential coal combustion to variance decreased from 36 % to 13 %, and the
reason is mainly attributed to the increasing proportion of briquettes used in residential
stoves. Different from BC, OC emissions in China are much more sensitive to resi-
dential biofuel combustion (Fig. 7e), which accounts for 64 %–84 % of the variances.
The second largest variance is due to residential coal combustion, accounting for 4 %–20

20 % of the variances, depending on the year. Due to the relatively lax application of
PM emission controls in India, the contributions of major fuel/usage combinations to
variances of carbonaceous aerosol emissions were relatively stable during 1996–2010
(Fig. 7d and f). For BC emissions in India, the largest variance is due to the residential
fuelwood combustion (∼70 %), followed by coal combustion in the industrial (∼15 %)25

and residential (∼5 %) sectors. Residential fuelwood combustion accounts for an even
higher rate for Indian OC emission variances (>83 %). It should be noted that the trans-
portation sector is not a big contributor to variance of either species in China and India
(<3 %). This is different from the situation in regions like North America and Europe
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(Bond et al., 2004), because carbonaceous aerosol emissions in China and India are
mainly from residential biofuel and coal combustion, which have higher uncertainties.
For both countries, open biomass burning only contributes 1 % and 4 % of the BC and
OC emission variances, respectively. This is much lower than the fractions estimated
by Bond et al. (2004). The reason is mainly due to the improved methodology in esti-5

mating the open burning of agricultural waste and the use of GFEDv3.1 datasets, the
uncertainty of which is relatively well quantified.

One benefit of Fig. 7 is that it can point out areas in which additional research could
help to reduce uncertainties. For SO2 emissions, more information on sulfur contents
of coals and precise coal consumption data are essential to get reliable emission esti-10

mates. More field measurements of PM emission characteristics in residential biofuel
combustion, residential/industrial coal combustion, and coke making will be critical to
improve the carbonaceous aerosol emission estimates in the future.

3.3 Comparison with previous studies

3.3.1 Bottom-up inventories15

Figures 5 and 6 compare the emission estimated in this study (excluding emis-
sions from open biomass burning) to other bottom-up inventories, including regional
and global inventories, such as GAINS (Klimont et al., 2009), REAS (Ohara et al.,
2007), TRACE-P (Streets et al., 2003), INTEX-B (Zhang et al., 2009b), HTAP-EDGAR
(http://edgar.jrc.it/eolo/), EDGAR4.1 (JRC/PBL, 2010), AEROCOM (http://dataipsl.ipsl.20

jussieu.fr/AEROCOM/emissions.html), Bond et al. (2004, 2007), and Smith (2011); and
country-specific emission estimates, such as Lu et al. (2010), Streets et al. (2000,
2001), Lei et al. (2011), Cao et al. (2006), and Zhao et al. (2009, 2011) for China,
and Reddy and Venkataraman (2002a, b), Venkataraman et al. (2005), Dickerson et
al. (2002), Parashar et al. (2005), Mitra and Sharma (2002), Sahu et al. (2008), and25
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Garg et al. (2006) for India. Some of these other estimates are trends, and some are
single-year estimates.

As shown in Figs. 5a and 6a, most previous estimates of SO2 emissions from China
and India are within the 95 % CIs of the current study, except for China’s SO2 emission
estimated by the REAS (Ohara et al., 2007) and reported by the China MEP (MEP,5

2011), and India’s emission estimated by Garg et al. (2006). The discrepancies be-
tween different studies are caused by a combined effect of the different amounts and
distribution of fuel consumption between sectors and the implied emission factor as-
sumptions (Klimont et al., 2009). China’s SO2 emissions in the REAS inventory have
been found to be too high by a number of researchers (Aikawa et al., 2010; Klimont et10

al., 2009; Lu et al., 2010; Smith et al., 2011; Zhang et al., 2009b; Zhao et al., 2011), es-
pecially for the period after 2000. After examining the emissions carefully, we attribute
the discrepancies mainly to the high emission factors chosen in the REAS inventory.
For example, the emission factor for industrial coal combustion in the REAS inventory
is 934.2 g GJ−1 in 2000, which is 70 % higher than our value (549.2 g GJ−1) and out-15

side our uncertainty range (449.9–660.1 g GJ−1) (Table S3 in the Supplement). Due
to this factor alone, SO2 emissions in China in REAS are overestimated by 4.2 Tg in
2000. Although efficiencies of SO2 removal by power plants were considered in three
REAS scenarios in China, the main reason for the consistency between the REAS and
our estimate in 2010 is the seriously underestimated fuel consumption in China. The20

fuel consumption was projected to be 57.9 EJ in the REAS reference scenario of 2010,
which is 45 % lower than our data (105.6 EJ, Fig. 1). Comparing with REAS, China’s
fuel consumption in 2010 in the GAINS model (97.1 EJ) is much closer to the actual
data. However, the FGD penetration of power plants in the GAINS model (28 % and
56 % for old and new power plants, respectively) is much lower than the real situation25

(see Sect. 3.1.1). For this reason, the GAINS’s estimation in 2010 is higher than this
study. Our estimates follow the trend of values reported by the China MEP (MEP, 2011)
(R = 0.83), but are significantly higher, which may be caused by the omission of SO2
emissions from rural industries and biofuels in the China MEP inventory (Streets et al.,
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2003; Zhang et al., 2009b). For India, all of the estimates show an increasing SO2
emission trend during 1996–2010 (Fig. 6a). The AGR of our estimates is 3.9 %, which
is in line with AGRs of 3.5 %–5.1 % estimated by other researchers during this period.
The Garg et al. (2006) values are below the lower bounds of the 95 % CIs calculated
in this study. This is mainly due to the lower coal consumption (25 % lower than this5

study) used in their calculation.
In general, the agreement among estimates of BC emissions for China is reasonably

good (Fig. 5b), though these studies rely to a greater or lesser extent on the same
original emission factors presented by Streets et al. (2001) and Bond et al. (2004),
which, however, have a much larger uncertainty. For India, the data are more scat-10

tered (Fig. 6b), mainly due to the widely varying emission factors for residential biofuel
combustion that were applied in the different studies. For example, the BC emission
factors of residential biofuel are about 1.0–1.3 g kg−1 in GAINS, REAS, TRACE-P, and
Parashar et al. (2005), which are at least twice the values used in Bond et al. (2004,
2007), Reddy and Venkataraman (2002b), and Venkataraman et al. (2005) (around15

0.5 g kg−1). In this work, new emission factors for biofuel combustion obtained from field
tests have been incorporated (Habib et al., 2008; Parashar et al., 2005; Venkataraman
et al., 2005). However, it remains the situation that much of the underlying analytical
approach relies on emission factors extracted from PM measurements in developed
countries that may or may not be reflective of the true nature of Chinese and/or India20

emitters. Even when emission factors have been measured in field tests in developing
countries, there is a surprisingly high uncertainty, reflective of the fact that the condi-
tions of the stove, air flow, fuel, and combustion conditions – which vary from household
to household – dictate the nature of the particles that are generated. The aggregate
amount of fuel burned in households must also inevitably be uncertain. Besides the25

lower BC emission factors of residential biofuel used in Venkataraman et al. (2005) and
Reddy and Venkataraman (2002a, b), the fact that emissions estimated in these two
studies are slightly below the lower bounds of 95 % CIs of this work is also attributed
to the omission of sources like residential coal combustion and/or biofuel consumption
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for heating. Although Sahu et al. (2008)’s estimation (1344 Gg) for 2001 lies within the
uncertainty range estimated here, they used extremely high emission factors for fossil
fuels, which are no longer used by the community.

Figures 5c and 6c compare the OC emissions from China and India estimated in
this study to other work. For China, the agreement among different estimates is quite5

good, although the emission factors are highly uncertain. OC emission estimates are
generally in the range of 2.0–3.5 Tg yr−1, with the exception of the point estimate of
3.8 Tg for 2000 by Cao et al. (2006), whose industrial emission value (1.12 Tg) was
much higher than other studies (around 0.03 Tg). The agreement for OC emissions
in India is even worse than for BC. The poor agreement is attributed to the enhanced10

role of biofuel/biomass burning and the difficulties in obtaining good emission factors
and estimating reliable activity levels for these sources. The laboratory-test results of
Venkataraman et al. (2005) and Habib et al. (2008) indicate that OC emission factors
of fuelwood are about 0.4 g kg−1 at low burn rates, whereas they rise to 2.7 g kg−1 at
high burn rates. Their results also show that the OC emission factor varies in the range15

of 0.6–4.7 g kg−1 between different types of agricultural residue. For dung cake, their
measurements give an OC emission factor of about 2.4 g kg−1; however, Parashar et
al. (2005) found it could be as high as 12.6 g kg−1 under smoldering conditions during
its use as a source of energy in rural areas of India. OC emission factors of biofuel
used in other studies in Fig. 6c are 3.45 g kg−1 for GAINS, 5.0 g kg−1 for TRACE-P, and20

6.28 g kg−1 for REAS. The large range of emission factors brings high uncertainty to
the OC estimates, especially for India, where biofuel combustion is dominant.

3.3.2 Uncertainty range

We have compared our uncertainty ranges with those reported in other studies. Our
estimated uncertainty ranges of SO2 emissions (about ±16 %) are close to the results25

of TRACE-P (±13 %), INTEX-B (±12 %), and Zhao et al. (2011) (±14 %) for China, but
lower than TRACE-P for India (±26 %) and Smith et al. (2011) for both China (±29 %)
and India (±24 %). Estimates of carbonaceous aerosol emissions in this work are
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significantly improved. The average uncertainty ranges of BC (−43 %–93 %) and OC
(−43 %–80 %) in China are much lower than the results in TRACE-P (−83 %–584 %
for BC and −83 %–595 % for OC), INTEX-B (−68 %–308 % for BC and −72 %–358 %
for OC), Lei et al. (2011) (−65 %–287 % for BC and −70 %–329 % for OC), Bond et
al. (2004) (−36 %–149 % for BC and −44 %–103 % for OC), and Zhao et al. (2011)5

(−25 %–136 % for BC and −40 %–121 % for OC). For India, our results (−41 %–87 %
for BC and −44 %–92 % for OC) are also lower than the estimations of TRACE-P
(−78 %–459 % for BC and −84 %–644 % for OC) and Bond et al. (2004) (−38 %–
119 % for BC and −43 %–93 % for OC). The following reasons may be attributed to
the reduction of uncertainties. First, we applied the Monte Carlo approach to our de-10

tailed technology-based emission model, and the “compensation-of-error” mechanism
of Monte Carlo simulation can reduce random errors significantly (Zhao et al., 2011).
Second, in the present work, we obtained more detailed information about the tech-
nology distribution, activity rate, and emission characteristic for both China and India.
Third, some newly developed methodologies or inventories were incorporated, e.g.,15

the GFED3.1 inventory, unit-based power-plant emission inventories, newly estimated
Indian biofuel consumption, etc.

3.3.3 Constraints from observations and models

Bottom-up emission inventories can be evaluated, constrained, and improved by ob-
servations directly (including ground-, aircraft-, and balloon-based measurements and20

satellite retrievals) or by the forward or inverse modeling of these observations. In
previous work, we compared the SO2 emissions in China with a variety of observed
sulfur related quantities over East Asia, including SO2 and SO2−

4 concentrations, sur-
face solar radiation, and AOD (Lu et al., 2010). We found the trends of these obser-
vations are generally consistent with the trend of our SO2 emission estimates during25

2000–2008. Van Donkelaar et al. (2008) analyzed AOD data from MISR and MODIS
for 2000–2006 with the GEOS-Chem model. They derived the annual growth in Chi-
nese sulfur emissions to be 6.2 % and 9.6 %, respectively, which is in good agreement
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with our current work (8.2 %). Aikawa et al. (2010) compared the measured sulfate
concentration at multiple sites over the East Asia Pacific Rim region with CMAQ model
simulations using both the REAS and the China MEP SO2 inventories. They concluded
that the REAS inventory overestimates, whereas the China MEP inventory underesti-
mates the SO2 emissions from China. Our central estimates as well as uncertainty5

ranges fall in the middle of these two inventories. During the TRACE-P and the ACE-
Asia field experiments, intensive measurements were used in conjunction with forward
and inverse modeling analysis to evaluate emission estimates for Asia. The results
indicated that SO2 emissions in the TRACE-P inventory are reasonable (Carmichael
et al., 2003; Russo et al., 2003), while BC emissions are qualitatively correct at the10

national level, but the spatial distributions are questionable (Carmichael et al., 2003;
Hakami et al., 2005). Recently, Kondo et al. (2011) estimated the BC emission rate
of China by comparing BC concentrations observed at a remote site in the East China
Sea and those predicted by 3-D chemical transport models. They derived the annu-
ally averaged BC emission flux over China to be 1.92 Tg with an uncertainty of about15

40 % during 2008–2009. This value is very close to our estimation of 1.79 Tg with an
uncertainty of −41 %–84 % in 2008.

3.4 Gridded emissions

Figures S1–S3 in the Supplement show the spatial distributions of SO2, BC, and OC
emissions in China and India at a resolution of 0.1◦×0.1◦ in 1996, 2000, 2005, and20

2010. The annual gridded emissions data by sector are available from the correspond-
ing author. To present the emissions from LPSs more clearly (especially for SO2 emis-
sions from power plants), we give the emission distributions at a resolution of 0.5◦×0.5◦

in Fig. 8. As shown in Fig. 8, a significant increase of emissions can be seen in both
countries between 2000 and 2008. For SO2, emission fluxes are high at grids with25

power plants and industrialized city clusters (e.g., eastern central China and Sichuan
Basin). More SO2 hot spots are observed in China than in India during 2000–2008
because the increase of thermal based electricity generation in China was realized by
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building new power plants – often in undeveloped parts of the country – whereas that
in India was realized by increasing the capacities of existing plants. Compared to SO2,
high emission regions of carbonaceous aerosols are not concentrated in hot spots, but
spread across eastern and central China and the northern and eastern states of India
where rural population densities are high and residential coal and biofuel combustion5

are prevalent.

3.5 Seasonality of emissions

Figure 9 presents the average seasonality of SO2, BC, and OC emissions, as well
as sectors with significant monthly variations (maxima/minima >1.2) in China and In-
dia. Biomass burning of forest and savanna occurs usually in February–June for both10

countries, and that of crop waste burning peaks in July and October for China, and
April and September–November for India, corresponding to the major harvest seasons.
Residential emissions in China are higher in December, January and February due to
residential heating needs in winter. Significant monthly variations are also found in the
power and industry sectors of China. Emissions are higher in December and lower15

in February, with maxima-to-minima ratios of 1.4 and 1.5 for the power and industry
sectors, respectively. Regarding the seasonality of each species, it is a combination of
sectoral emissions on the basis of their weight contribution to the total emissions. The
ratios of monthly SO2, BC, and OC emissions between maxima and minima are 1.4,
2.1, and 2.5 for China, and 1.1, 1.2, and 1.5 for India (Fig. 9a).20

4 Comparison of emission estimates and satellite observations

As mentioned in Sect. 3.3.3, observations from field measurements and satellites can
be used directly to constrain bottom-up emission inventories. Comparing with ground-,
aircraft-, and balloon-based measurements, satellite observations provide better tem-
poral sampling and spatial coverage. In the following section, we will use satellite25

retrievals of AOD and SO2 to verify the emission trends of this study.
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4.1 AOD

AOD is strongly influenced by the natural particulate component (e.g., dust and sea
salt) in China and India (Chin et al., 2009; Streets et al., 2009). To compare the
satellite AOD and our emission estimates, the first step is to identify the months
in which anthropogenic emissions have the greatest impact on AOD. Figures 10a5

and 11a show the monthly AOD variations of the major aerosol components over
eastern central China (latitude <45◦ N, longitude >100◦ E) and India from GOCART
model simulations. For eastern central China, dust (originating mainly from the Tak-
limakan Desert and the Gobi Desert) comprises a large fraction of AOD in spring
(March–May, 33 %). The combined contribution from sulfate, BC, and primary or-10

ganic matter (POM) to total AOD is high during June–January, accounting for 82 %
of total AOD. To minimize the potential effect of biomass burning of forest and sa-
vanna in summer (June–August), we select September–January as our study period for
China. In India, the monsoon meteorology can be divided into four basic periods: win-
ter (December–February), summer/pre-monsoon (March–June), monsoon (late June–15

September), and post-monsoon (October–November). Since the transportation of min-
eral dust from Iran, Afghanistan, and the Thar Desert in western India is pronounced
during summer and monsoon months (Kharol et al., 2011; Prasad and Singh, 2007),
October–February is selected as our study period for India (the average combined
contribution from sulfate, BC, and POM to AOD is 79 %).20

Figures 10b and 11b show the temporal variation of monthly AOD values averaged
over eastern central China and India, respectively, from Terra/MODIS, Aqua/MODIS,
and MISR satellite retrievals during the selected study periods. Generally, Terra/MODIS
has higher AOD values over China and India, while values of MISR AOD are lower.
The correlations between the three datasets are high (R = 0.87–0.95 for China, and25

0.95–0.97 for India). All these findings are consistent with previous studies (Ahn
et al., 2008; Kharol et al., 2011; Prasad and Singh, 2007). The discrepancies be-
tween different instruments may be caused by the satellite characteristics, detection
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principle, measurement time, retrieval algorithms, etc. The annual averages, as well
as the standard deviations of the monthly AOD, are shown in Figs. 10c and 11c. Fig-
ures 10c and 11c also show the trends of estimated AOD due to SO2, BC, and OC
emissions in both countries. In our previous work, we established a linear relationship
between AOD and the emission strengths of the various aerosol precursors from a5

single-year (year 2001) run of the GOCART model (Streets et al., 2009). In this study,
we follow a similar methodology, but use the results from multiple-year (2000–2007),
full runs of the GOCART model for the purpose of capturing any year-to-year variability
of the relationships that might arise from long-term changes in meteorology, chemistry,
transport, etc. AOD value due to species j in country i for year t is calculated by:10

AODj,i ,t = fj,i ,t ·Emj,i ,t (4)

where Em is the annual emission rate, and f is a linear conversion factor between
the GOCART AOD and the emission mass. For years 2008–2010, average f values
between 2000 and 2007 were used. It should be noted that other natural emissions
contributing to the SO2, BC, and OC emissions in China and India (e.g., biogenic,15

volcanic, and DMS emissions) were also considered in the calculation, although they
are very small compared to anthropogenic and biomass burning emissions.

As shown in Figs. 10c and 11c, the trends of estimated AOD due to SO2, BC, and
OC emissions are in good agreement with the trends of AOD satellite retrievals in both
China and India during the selected study periods (R =0.67–0.83 for China, and 0.75–20

0.91 for India). This suggests a close relationship between AOD and emissions of
aerosols and their precursors. For eastern central China, AOD retrievals from three in-
struments were increasing during 2000–2006, corresponding to the dramatic increase
of emissions in China (Aqua/MODIS and MISR have statistically significant trends at
a 95 % confidence level). The AGRs are 4.1 %, 4.8 %, and 5.7 % for Terra/MODIS,25

Aqua/MODIS, and MISR, respectively, and are in line with the rates of 3.4 %–4.1 % re-
ported by van Donkelaar et al. (2008). After 2006, the decreasing tendency of satellite
AOD retrievals in China also corresponds well with our estimated AOD, which is based
on the current emission estimates (Terra/MODIS has a statistically significant trend at a
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95 % confidence level). The decline is mainly attributed to the pronounced decrease of
SO2 emissions in China and the dominant role of sulfate in AOD (62 %, Fig. 10a). For
India, although there is some interannual variation, AOD values from different datasets
were continuously increasing during the last decade, with AGRs of 2.0 %, 3.5 %, 2.5 %,
and 3.5 % for Terra/MODIS, Aqua/MODIS, MISR, and our estimated AOD, respectively.5

All the linear tendencies in Fig. 11b are statistically significant at a 95 % confidence
level. This result is qualitatively and quantitatively in line with several Indian studies.
For example, Prasad and Singh (2007) compared the AOD retrievals of both MISR
and Terra/MODIS over the Indo-Gangetic basin and observed an increase in satellite-
derived aerosol loading over major cities for the 2000–2005 winter and summer sea-10

sons. Kharol et al. (2011) found that AOD values over the urban region of Hyderabad
from both Terra/MODIS and Aqua/MODIS show increasing trends in the period 2002–
2008 with AGRs of 3.0 % and 4.4 % for Terra/MODIS and Aqua/MODIS, respectively.
All these imply an increase in emissions driven by the growth of economic, energy
consumption, and population in India after 2000.15

4.2 SO2

Due to the low sensitivity, the early remote sensing instruments were only able to mon-
itor and quantify SO2 emissions from exceptional pollution events such as volcanic
eruptions. However, the sensitivity improvement of the current generation of instru-
ments (e.g., SCIAMACHY and OMI) makes it possible to identify strong anthropogenic20

SO2 signals from LPSs (e.g., smelters and coal-fired power plants) or industrial regions
(e.g., China) (Krotkov et al., 2008; Lee et al., 2009). In this section, we compare our
SO2 emission trend with trends of SO2 columns retrieved from satellites in eastern
central China; unfortunately, SO2 signals over India are too low to give reliable data
at this time. Figure 12 shows the annual average SO2 column from SCIAMACHY and25

OMI over eastern central China during 2004–2010. It should be noted that, although
OMI columns appear to be higher than SCIAMACHY columns, they use different AMF
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values (Sect. 2.4). Recently, Lee et al. (2009) developed a local AMF algorithm by
using SO2 and aerosol profiles simulated in a GEOS-Chem model. They suggested a
seasonal average AMF of about 0.5 over China. Applying this factor, the SCIAMACHY
columns tend to be 0.6 DU higher than OMI columns, which is consistent with the find-
ing of Lee et al. (2009) (0.4–0.7 DU over east China).5

As shown in Fig. 12, the increase of SO2 emissions before 2006 and the decrease of
SO2 emissions after 2007 are captured in the trends of SO2 columns observed by both
the SCIAMACHY and the OMI instruments. However, there are some discrepancies
between the trends of emissions and observations. For example, satellite observations
peak in 2007, whereas SO2 emission in China peaks in 2006; and SO2 emissions are10

estimated to continue to decrease in 2010, whereas SO2 retrievals seem to suggest
an increase. It is really hard to tell the exact reasons for these discrepancies since
both emission estimates and satellite retrievals contain substantial uncertainties. From
the perspective of the emission inventory, national SO2 emissions are sensitive to the
actual FGD removal efficiency, especially for the year 2007 (16 % of the variances,15

Fig. 7a). As mentioned in Sect. 3.2, the China MEP reported a SO2 removal rate of
73.2 % in 2007 for FGD equipped power plants, whereas this rate was only 64.1 % in
Jiangsu province, which has a relatively good track record on environmental protection
(Xu et al., 2009). If the actual FGD removal efficiency was 10 % lower than the value
reported by the China MEP (i.e., 63 %), SO2 emissions from China in 2007 would20

reach 34.2 Tg, higher than the estimated emissions in 2006. On the other hand, the
retrieved SO2 columns also contains large uncertainties, which are related to cloud
cover, viewing geometry, SO2 profile (shape factor), and aerosol loading, as well as
interference by the absorption signals of ozone (Krotkov et al., 2008; Lee et al., 2009).
Krotkov et al. (2008) reported that the presence of UV absorbing aerosols (e.g., dust25

and secondary organic aerosol, SOA) in China would reduce the AMF by half and
double the retrieved SO2. A reduction of aerosol absorption over Beijing since 2007
has been reported through an analysis of observations of MODIS and AERONET AOD,
and long-term measurements of PM chemical composition in Beijing (Lyapustin et al.,
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2011). Hence, if absorbing aerosol loading over China in 2010 was significantly lower
than in previous years, it would be possible to obtain lower corrected SO2 columns.

In addition, the change of SO2 atmospheric chemistry could also affect the rela-
tionship between emissions and observations. Using a global chemistry and aerosol
model, Manktelow et al. (2007) found that the surface sulfate concentration over East5

Asia increased at a greater rate than the SO2 emission, whereas the surface SO2
concentration increased at a lower rate. This conclusion was later confirmed by our
analysis of SO2 and sulfate concentration monitored in Japan and Korea (Lu et al.,
2010), indicating that East Asia is a less oxidant-limited area than other areas in the
world. In the past few years, the Chinese government has implemented a series of10

air pollution control measures, especially during preparations for the Beijing Olympic
Games, and the primary air pollutants as well as SO2 oxidants such as OH, H2O2, and
O3 have been reported to significantly decrease (e.g., He et al., 2010; Wang et al.,
2009). Hence, it is possible that the conversion efficiency of SO2 to sulfate decreased
over China in recent years, and thus gaseous SO2 was preferentially accumulated in15

the atmosphere.

5 Summary and conclusions

In the present work, we use a detailed technology-based methodology to estimate his-
torical SO2 and primary carbonaceous aerosol (i.e., BC and OC) emissions in China
and India during the period 1996–2010. Emission sources are categorized into five ma-20

jor sectors: power generation, industry, residential, transportation, and open biomass
burning. Time-dependent trends in activity rates, technology penetration, and emission
factors are incorporated into the calculations to reflect the rapid increase of energy
consumption and the dramatic changes in technology distribution and hence emission
factors during this period. Emissions are gridded at a resolution of 0.1◦×0.1◦ using25

year-by-year spatial proxies and related datasets. In addition, year-specific monthly
fractions for SO2, BC, and OC emissions from each major sector during 1996–2010
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are developed. All of the input parameters and their corresponding probability distri-
butions are incorporated into a Monte Carlo framework to determine the uncertainties
of emissions. Sensitivity analysis is conducted to identify the major contributors to the
emission uncertainties. Satellite retrievals of AOD (from Terra/MODIS, Aqua/MODIS,
and MISR) and SO2 (from SCIAMACHY and OMI) are used to verify the bottom-up5

emission trends, and good agreement is found.
China and India are the two largest national contributors to the global anthropogenic

aerosol budget. Our results indicate very high growth of SO2, BC, and OC emissions
in both countries during the study period. Between 1996 and 2010, emissions growth
in China was 27 % for SO2, 21 % for BC, and 21 % for OC, with periods of greater and10

lesser growth during the entire timeframe. Emissions growth in India over the same pe-
riod was 70 % for SO2, 41 % for BC, and 35 % for OC, at a steady pace throughout the
period. Other things being equal, it can be expected that similar increases will have oc-
curred in ambient concentrations, deposition, and transport of these species. As a con-
sequence, significant impacts on human health, air quality, atmospheric physics and15

chemistry, climate forcing, hydrological cycles, and ecosystems at local-, regional-, and
global scales will have occurred. The emission trends and annually gridded datasets
developed in the current work can be used by regional and global models to address
these associated issues and help us to better understand the effects of intensive re-
lease of aerosols (and their precursors) on the environment during this period of rapid20

economic development. Additionally, the Monte Carlo uncertainty analysis provided
in this work makes it possible for modelers to estimate uncertainties in, for example,
aerosol radiative forcing due to uncertainties in aerosol emissions.

Supplementary material related to this article is available online at:
http://www.atmos-chem-phys-discuss.net/11/20267/2011/25

acpd-11-20267-2011-supplement.pdf.
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Table 1. Emissions of SO2, BC, and OC in China by sector and fuel type (Gg yr−1)

1996 2000 2004 2008 2010

SO2 Power plants 9104 9959 15655 12486 6587
Industry 11 436 8559 11 890 16 370 20 388
Residential 3212 1947 2048 2365 2931
Transport 499 614 865 819 857

Coal 22 737 19 448 27 697 28 881 27 372
Oil 709 845 1363 1274 1352
Biofuel 89 87 126 129 127
Other 716 699 1273 1756 1912

Forest & savanna burning 14 23 10 14 14
Agricultural waste burning 54 51 52 58 58

Total 24 318 21 153 30 520 32 112 30 834

BC Power plants 12 11 14 19 21
Industry 527 370 437 510 501
Residential 790 639 826 888 936
Transport 92 139 194 259 283

Coal 849 518 576 636 662
Oil 141 205 290 396 434
Biofuel 418 417 583 620 619
Other 14 18 21 24 25

Forest & savanna burning 12 19 10 13 12
Agricultural waste burning 90 86 88 97 97

Total 1524 1263 1569 1787 1850

OC Power plants 12 10 11 10 11
Industry 520 359 405 446 384
Residential 2150 1893 2519 2670 2790
Transport 85 152 197 241 260

Coal 1120 685 740 821 850
Oil 102 175 229 284 308
Biofuel 1528 1533 2138 2234 2257
Other 17 21 25 28 30

Forest & savanna burning 127 212 88 126 126
Agricultural waste burning 427 409 419 467 463

Total 3322 3035 3638 3959 4033
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Table 2. Emissions of SO2, BC, and OC in India by sector and fuel type (Gg yr−1).

1996 2000 2004 2008 2010

SO2 Power plants 2550 3251 3791 4708 5236
Industry 1945 1973 2102 2544 2784
Residential 374 321 350 543 583
Transport 263 225 207 192 144

Coal 3375 3779 4559 6019 6730
Oil 1533 1732 1593 1638 1661
Biofuel 87 84 87 99 99
Other 138 175 210 232 257

Forest & savanna burning 17 15 17 14 17
Agricultural waste burning 36 33 36 42 44

Total 5185 5819 6502 8044 8807

BC Power plants 3 4 4 5 5
Industry 155 168 198 217 227
Residential 402 421 481 563 579
Transport 80 88 88 107 111

Coal 177 172 209 276 295
Oil 117 126 124 153 159
Biofuel 338 373 426 449 454
Other 8 10 12 14 15

Forest & savanna burning 19 17 19 16 19
Agricultural waste burning 60 56 59 71 74

Total 718 753 850 979 1015

OC Power plants 6 8 10 12 14
Industry 155 166 195 208 214
Residential 1379 1476 1725 1899 1946
Transport 52 61 56 58 54

Coal 203 186 226 322 346
Oil 67 76 70 75 72
Biofuel 1313 1438 1676 1763 1792
Other 9 11 14 17 17

Forest & savanna burning 157 142 158 133 157
Agricultural waste burning 287 269 285 340 354

Total 2035 2122 2429 2651 2739
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Table 3. Average contribution of each sector to total uncertainties during 1996–2010 (unit: %).

China India

SO2 BC OC SO2 BC OC

Power plants 37 2 0 46 1 1
Industry 47 29 14 37 23 8
Residential 13 60 67 10 65 74
Transport 2 6 6 3 6 1
Forest & savanna burning 0 1 2 1 2 4
Agricultural waste burning 1 3 11 3 5 12
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Fig. 1. Energy consumption by sector and fuel type, and biomass burned in (a) China and
(b) India during 1996–2010.
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Fig. 2. SO2 emissions by sector and fuel type in (a) China and (b) India during 1996–2010.
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Fig. 3. BC emissions by sector and fuel type in (a) China and (b) India during 1996–2010.
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Fig. 4. OC emissions by sector and fuel type in (a) China and (b) India during 1996–2010.
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Fig. 5. Comparison of emission estimates (excluding emissions from open biomass burning) for
China: (a) SO2, (b) BC, and (c) OC. The right subgraphs present the distributions of estimated
emissions in 2010. The blue bars are beyond the 95 % CIs.
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Fig. 6. Comparison of emission estimates (excluding emissions from open biomass burn-
ing) for India: (a) SO2, (b) BC, and (c) OC. The right subgraphs present the distributions of
estimated emissions in 2010. The blue bars are beyond the 95 % CIs.
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Fig. 7. The contributions of major parameters or fuel/usage combinations to variance in SO2 (a,
b), BC (c, d), and OC (e, f) emissions from China (a, c, e) and India (b, d, f) during 1996–2010.
IN, RE, and TR represent industry, residential, and transportation sector, respectively.
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Fig. 8. Emission distributions of SO2, BC, and OC at 0.5◦×0.5◦ resolution in 2000 and 2008.
International shipping and aviation are not included.
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Fig. 9. Average seasonality of SO2, BC, and OC emissions (a) and monthly profiles of major
sectors (b) in China and India during 1996–2010.
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Fig. 10. AOD from GOCART model simulations and the MODIS (Terra and Aqua) and
MISR satellite instruments over eastern central China (latitude <45◦ N, longitude >100◦ E).
(a) Monthly variation of GOCART AOD and the combined contribution from sulfate, BC, and
POM to total AOD during 2000–2007. (b) Monthly mean variability of satellite AOD retrievals
during September to January 2000–2010. Solid and dashed lines represent the linear tenden-
cies before and after 2006, respectively. (c) Trend of estimated AOD due to SO2, BC, and
OC emissions, and evolutions of satellite AOD averaged between September and January dur-
ing 2000–2010. R values shown are the correlation coefficients of each satellite AOD with
estimated AOD. Error bars express one standard deviation of the monthly mean.
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Fig. 11. AOD from GOCART model simulations and the MODIS (Terra and Aqua) and MISR
satellite instruments over India. (a) Monthly variation of GOCART AOD and the combined
contribution from sulfate, BC, and POM to total AOD during 2000–2007. (b) Monthly mean
variability of satellite AOD retrievals during October to February 2000–2010. Solid lines repre-
sent the linear tendencies. (c) Trend of estimated AOD due to SO2, BC, and OC emissions,
and evolutions of satellite AOD averaged between October and February during 2000–2010. R
values shown are the correlation coefficients of each satellite AOD with estimated AOD. Error
bars express one standard deviation of the monthly mean.
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Fig. 12. SO2 emissions in China and annual average SO2 column from SCIAMACHY and OMI
over eastern central China during 2004–2010.
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