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Abstract

We conduct a variety of analyses to support mission planning for geostationary satel-
lite measurements of atmospheric composition. We carry out a simplified observing
system simulation experiment (OSSE) using a photochemical box model and its ad-
joint integrated with a Lagrangian 4-D-variational data assimilation system. Using this5

framework in conjunction with pseudo observational constraints we estimate surface
emissions and assess the improvement in ozone air quality forecasting and prediction.
We use an analytical model as our principle method of conducting uncertainty analy-
ses, which is the primary focus of this work. We investigate the impacts of changing
the observed species (e.g., ozone, carbon monoxide (CO), nitrogen dioxide (NO2), and10

formaldehyde (HCHO)), observation frequency and quality upon the ability to predict
the magnitude of summertime peak ozone events, characterize the uncertainties of
those predictions, and the performance of the assimilation system. We use three ob-
served species scenarios: CO and NO2; ozone, CO, and NO2; and HCHO, CO and
NO2. These scenarios are designed to test the effects of adding observations of ei-15

ther ozone or HCHO to an existing CO and NO2 observing system. The studies were
conducted using the photochemical model setup to simulate a range of summertime
polluted environments spanning NOx limited to volatile organic compound (VOC) lim-
ited conditions. As the photochemical regime changes the relative importance of trace
gas observations to constrain emission estimates and subsequent ozone forecasts20

varies. For example, adding ozone observations to an NO2 and CO observing system
is found to decrease ozone prediction error under NOx and VOC limited regimes, and
complimenting the NO2 and CO system with HCHO observations would improve ozone
prediction in the transitional regime and under VOC limited conditions.
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1 Introduction

Ozone is a hazard to human health, plants and animals and a greenhouse
gas (Mustafa, 1990; Pryor, 1992; Murphy et al., 1999; Fumagalli et al., 2001; Nali
et al., 2002; IPCC, 2007; Van Dingenen et al., 2009). The spatial distribution and
temporal variability of air pollutants play an important role in controlling ground-level5

ozone. Knowledge of the processes that control the variability of ozone precursors is
vital for understanding and predicting ozone air quality. Prediction of ozone air quality
on local and regional scales is key for providing prior warning of impending ozone ex-
ceedances (Dabberdt et al., 2004, 2006). Currently, a wide variety of techniques are
used to predict ozone concentrations ranging from statistically based models (Gard-10

ner and Dorling, 2000), neural networks (Yi and Prybutok, 1996), to prognostic models
of atmospheric processes that include data assimilation (Grell et al., 2005; Otte et al.,
2005; Zhang et al., 2008; Kang et al., 2010). For prognostic models, uncertainties result
from meteorology, the limitations of the photochemical mechanisms, wet and dry de-
position, uncertainties in the emissions of ozone precursors, and, for data assimilation,15

observation uncertainty (Dabberdt et al., 2004, 2006). Current predictive statistical and
data assimilation forecasting techniques rely primarily on surface observing networks.

The US national surface air quality observing network typically observes a wide
range of chemical species, but has sparse and inhomogeneous spatial coverage
closely related to population density. For instance, surface monitoring sites within20

California (http://www.arb.ca.gov/adam/) have instruments that can measure in-situ
ozone, CO, NO2, nitrogen oxide, particulate matter 2.5 µm and 10 µm, sulphur diox-
ide, methane, total hydrocarbons, and hydrogen sulphide on hourly timescales. Most
surface monitoring networks lack chemical species vertical profile information in the
absence of towers, LIDAR, or regular sonde launches. Vertical profile information can25

improve estimates of ozone transport into the boundary layer (Parrington et al., 2009;
Parrish et al., 2010). Due to the spatial limitations of the surface air quality monitoring
network, space-borne remote sensing observations, which typically have greater spa-
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tial sampling, are able to support air quality research. As a consequence investigations
of air quality using remote sensing data of atmospheric composition have been a major
research focus. Studies range from quantification of air quality indices (Martin, 2008;
Duncan et al., 2010), to inverse emission estimates of ozone precursors (Jones et al.,
2009; Bowman et al., 2009; Kurokawa et al., 2009; Konovalov et al., 2006; Millet et al.,5

2008; Kopacz et al., 2010; Arellano et al., 2006), direct observation of ozone and its
impacts on health and agriculture (Dufour et al., 2010; Fishman et al., 2010), and use
of observations of air pollutants within air quality models via data assimilation (Sandu
et al., 2003a; Chai et al., 2007; Pierce et al., 2007; Zhang et al., 2008; Parrington et al.,
2009). There are factors to be considered when comparing the characteristics of re-10

mote sensing observations to existing surface observing network. Surface monitoring
involves a point measurement whereas the spatial footprint and vertical sampling of
space-based remote sensing is generally coaser. For example, spatial footprints range
from 5×8 km for the Tropospheric Emission Spectrometer (TES) (Beer, 2006) up to the
relatively large 40×40 km for the Global Ozone Monitoring Experiment (GOME) (Bur-15

rows et al., 1999), and the vertical resolution ranges from a total ozone column to a
vertical profile depending on the wavelengths measured and whether the instrument
is passive or active. Satellite remote sensing observations of air quality relevant trace
gases within the lower troposphere are limited to fewer chemical species than surface
monitoring such as ozone, CO, NO2, and HCHO. In addition, satellite observations of20

trace gases typically have degraded precision relative to in-situ observations and the
error characterization is more complicated.

In the assimilation studies of Pierce et al. (2007), Zhang et al. (2008), and Parrington
et al. (2009), and in the case of the examples mentioned earlier (Konovalov et al., 2006;
Martin, 2008; Millet et al., 2008; Jones et al., 2009; Bowman et al., 2009; Kurokawa25

et al., 2009; Dufour et al., 2010; Duncan et al., 2010; Fishman et al., 2010), the satel-
lites used are in low Earth orbit (LEO) and are limited to observing single locations once
during the day in either the early afternoon (Aura and Aqua) or morning (Infrared Atmo-
spheric Sounding Interferometer, IASI (Clerbaux et al., 2009)) and at most two obser-
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vations per day, but do achieve global coverage. As such, the information provided aids
understanding of continental and global processes affecting air quality. Geostationary
(GEO) remote sensing offers denser temporal and spatial sampling and therefore have
the potential to better serve air quality research and forecasting observational needs
on local and regional scales (Edwards et al., 2009b; Campbell and Fishman, 2010).5

Much of the rational for moving to a monitoring system with denser temporal and spa-
tial sampling is that there are a variety of physical processes controlling air quality that
are occurring on far shorter timescales and smaller spatial scales compared to the LEO
spatio-temporal sampling. For example, the National Research Council decadal sur-
vey (http://science.nasa.gov/earth-science/decadal-surveys/) outlines a mission titled10

Geostationary Coastal and Air Pollution Events (GEO-CAPE), which will be a geo-
stationary satellite over North America designed to observe atmospheric composition
with scientific aims to aid and improve air quality forecasting (http://geo-cape.larc.nasa.
gov/) along with coastal ocean biophysical indices. For the purposes of our study we
focus solely on the atmospheric composition component of this mission. The European15

Space Agency (ESA) and the Korean National Institute of Environmental Research are
individually planning geostationary atmospheric composition monitoring instruments
named Sentinel 4 (http://www.esa.int/esaLP/SEM3ZT4KXMF LPgmes 0.html) and the
Geostationary Environment Spectrometer (GEMS) (Lee et al., 2009), respectively.
Aside from denser observing rates, the decadal survey and Lee et al. (2009) indicate20

that GEO-CAPE and GEMS will observe the following trace gases: ozone, CO, NO2,
HCHO, and sulphur dioxide (SO2). A range of instruments and spectral wavelengths
have been used for retrieving these four trace gases: tropospheric ozone has been
retrieved using UV and visible wavelengths in the case of TOMS (Total Ozone Map-
ping Spectrometer) (Gleason et al., 1993), SCIAMACHY (SCanning Image Absorption25

spectroMeter for Atmospheric Cartography) (Bovensmann et al., 1999), OMI (Ozone
Monitoring Instrument) (Levelt et al., 2006), and GOME (Burrows et al., 1999), and us-
ing the thermal IR (TIR) by AIRS (Atmosperic InfraRed Sounder) (Aumann et al., 2003),
TES (Beer, 2006), MIPAS (Michelson Interferometer for Passive Atmospheric Sound-
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ing) (Fischer et al., 2008), and IASI (Clerbaux et al., 2009); CO has been retrieved
using the near IR (NIR) and IR by MOPITT (Measurements Of Pollution In The aTmo-
sphere) (Drummond and Mand, 1996), and by AIRS (Aumann et al., 2003), TES (Beer,
2006), and IASI (Clerbaux et al., 2009); NO2 has been retrieved using visible wave-
lengths by OMI (Levelt et al., 2006), SCIAMACHY, and GOME (Burrows et al., 1999);5

and SO2 has been retrieved by GOME (Burrows et al., 1999), OMI (Levelt et al., 2006)
and SCIAMACHY (Bovensmann et al., 1999) using UV and visible wavelengths and
by MODIS (MODerate resolution Imaging Spectroradiometer) (Watson et al., 2004)
and TES (Clerbaux et al., 2008) using thermal infrared wavelengths. In the case of
GEO-CAPE the decadal survey indicates that sensitivity to the boundary layer trace10

gas concentrations should be achieved, which is a higher level of tropospheric verti-
cal resolution than has currently been achieved. Ozone retrievals with high vertical
information and boundary layer sensitivity have been proposed by combining different
radiance wavelength bands in the UV, visible, and IR (Landgraf and Hasekamp, 2007;
Worden et al., 2007). Similar efforts to improve vertical resolution in retrievals of CO15

have been successfully demonstrated by combining wavelength bands in the TIR and
NIR (Worden et al., 2010). Future geostationary satellites focusing on supporting air
quality observational forecasting needs have a variety of choices available regarding in-
strument design and spectral wavelength bands based on the heritage of instruments
deployed in LEO orbit, e.g., OMI, TES, SCIAMACHY, AIRS, and MOPITT. Given the20

available mission design choices we seek to provide support for such missions by indi-
cating how choices regarding observed species and observation precisions can affect
air quality forecast prediction error. We have therefore designed a simplified OSSE
to explore observing requirements for future geostationary atmospheric compostion
instruments. OSSEs have been used to evaluate and design observing systems for25

use by the numerical weather prediction community since the 1950s (Arnold and Dey,
1986), and, more recently, observing systems for trace gases (Rayner et al., 1996;
Jones et al., 2003; Edwards et al., 2009a). The main component of the simplified
OSSE is a prototype air quality forecasting framework consisting of an idealized prog-
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nostic model coupled with a data assimilation system.
Combining satellite observations of ozone and its precursors with data assimilation

models could potentially reduce the uncertainties in prognostic models and improve
their predictive skill of ozone air quality. Data assimilation has been used success-
fully in the context of ozone air quality in conjunction with chemical transport models5

and satellite remote sensing data of trace gas observations (Pierce et al., 2007; Zhang
et al., 2008; Parrington et al., 2009; Sofiev et al., 2009). Our framework consists of
a photochemical box model with idealized meteorology, its adjoint, and 4-D-variational
data assimilation setup to use pseudo observations to constrain ozone precursor emis-
sion uncertainties (for NOx, CO and VOC emissions) within scenarios where the only10

actual source of prediction error results from the emission uncertainties. Our OSSE
is simplified relative to other OSSEs (Rayner et al., 1996; Jones et al., 2003; Edwards
et al., 2009a) due to the relatively small model domain and lack of detailed meteoro-
logical simulation, since we use a box model rather than a regional or global model,
and because our observation simulation is relatively crude as we don’t simulate the15

full retrieval of trace gas species. We conduct an uncertainty analysis using a linear
estimation technique to support the work conducted with the 4-D-variational data as-
similation. In addition, we carry out a variety of supporting sensitivity analyses to test
the robustness of our methodology.

2 Methodology20

2.1 Overview

The photochemical box model is run over 3 days to represent a worsening period of
ozone air quality during a stagnation event. Meteorological stagnation events under
hot, sunlit conditions over urban areas typically lead to poor ozone air quality (Jacob
et al., 1993; Valente et al., 1998). Under stagnation event conditions we can focus on25

the role played by chemistry in allowing different selections of observations of ozone
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and its precursors to constrain emission uncertainties and reduce the air quality pre-
diction error. Another advantage of selecting a photochemical box model is that we
are able to generate a Jacobian describing the model response to emission parameter
perturbations, which can be used within an analytical modeling framework to conduct
uncertainty analysis. It would be very difficult to produce a Jacobian within a regional5

or global chemical transport models in a timely fashion given the size of the model
state space. Further, the resulting Jacobian is sufficiently small to be used within our
analytical framework and uncertainty analysis. Within the model framework days 1–2
represent the period over which observations are made and the final day represents
the prediction and monitoring period.10

We aim to demonstrate that the 4-D-variational data assimilation framework is capa-
ble of solving the non-linear optimal estimation problem in the context of constraining
ozone precursor emission uncertainties (for NOx, CO and VOC emissions) with obser-
vations. In addition, we aim to determine the variability of the prediction error of the
4-D-variational data assimilation prediction framework across a range of photochemi-15

cal conditions for fixed observing precision, varying observed species scenario, and for
a single realization of the observing noise.

4-D-variational data assimilation and the emission inversion problem are reflective of
the state of the art in prognostic air quality forecast modeling development (e.g., in the
case of the Community Multi Scale Air Quality Modeling System, Hakami et al. (2007)20

and the Sulfur Transport Eulerian Model, Zhang et al. (2008)) and thus our model
framework is relevant to and is reflective of the future direction of air quality forecast-
ing. In order to establish the utility of more complex air quality forecasting systems that
might use 4-D-variational data assimilation, and the relevance of our presented results,
our prototype forecasting system is demonstrated theoretically. Since the emission in-25

version problem that we explore only becomes more complex as the model state space
increases and additional sources of uncertainty are introduced a failure to show suffi-
ciently reduced prediction error in this setting would indicate that more complex sys-
tems are unlikely to fare better. Sufficient prediction model error within this framework is
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therefore a necessary but not sufficient condition for more complex 4-D-variational data
assimilation forecasting systems using space bourne observations to be successful.

Uncertainty analysis using 4-D-variational data assimilation is difficult. Therefore we
use an analytic model (derived from the photochemical box model) that is simplified
relative to the full assimilation framework that is capable of conducting a full uncer-5

tainty analysis characterizing the performance of the 4-D-variational data assimilation
system. This technique is a linear estimation technique based upon Rodgers (2000).
We calculate the following diagnostics across a wide range of observational uncer-
tainty, varying choices regarding targetted observing species, and different observing
frequencies: posteriori ozone prediction error covariance, posteriori emission parame-10

ter error covariance, the averaging kernel, and the degrees of freedom of signal. Given
the breadth of mission profiles explored the results contained herein will therefore be
relevant to GEO and LEO satellite instrument planning for instruments designed to
observe air quality indices, and to emission inversion studies using an adjoint model
coupled with data assimilation.15

The 4-D-variational data assimilation and uncertainty analysis using the linear esti-
mation are therefore complementary methods. In both cases we use a forward pho-
tochemical model setup using a range of NOx emission scenarios for polluted regions
and meteorologically idealized conditions, which is then coupled with each technique to
guide the observation requirements (observing frequency, noise, and observed species20

choice) for future GEO atmospheric composition missions, e.g., GEO-CAPE, Sentinel-
4, and GEMS. We conduct a series of supporting analyses: since we assume a fixed
diurnal variability of ozone precursor emissions, we study the impact on our conclu-
sions of varying the assumptions regarding the diurnal variability of emissions; we
carry out a sensitivity analysis to assess the relative performance of ozone and HCHO25

observations at reducing prediction error and to test the assumptions regarding HCHO
observing noise; and because when conducting the VOC emission inversion we solve
ethene emission uncertainties (rather than a more adverse range of VOCs) we test
that assumption in a sensitivity analysis by assuming VOC emission errors for ethane
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insead of ethene.

2.2 Photochemical box model

A 1-Dimensional photochemical box model was built using the Kinetic Pre-Processor
(KPP) (Damian et al., 2002; Daescu et al., 2003; Sandu et al., 2003b). The Rosenbrock
solver is used to integrate the KPP generated ordinary differential equations required to5

calculate trace gas concentrations (Eller et al., 2009). The photochemical mechanism
consists of 171 gas phase species and 524 chemical reactions simulating the degre-
dation of hydrocarbons from C1–C5 including isoprene and is based upon the Master
Chemical Mechanism v3.1 (Jenkin et al., 1997) (http://mcm.leeds.ac.uk/MCM/). In ad-
dition, the model includes dry deposition for all relevant chemical species, contains a 2-10

parameter photolysis scheme, and simulates the emission of ozone precursors includ-
ing NOx, CO, and volatile organic compounds (VOCs). The diurnal emission variabil-
ity of anthropogenic compounds is prescribed according to the National Atmospheric
Emissions Inventory (NAEI) (http://www.naei.org.uk/emissions/) for an urbanised area
(see Fig. 1), and the isoprene emission variability is parameterized to correlate to solar15

zenith angle offset by 2 h to consider both temperature and photon flux effects. The
isoprene emissions have an average daily emission of 1.7×1010 molecules m2 s−1 and
an afternoon peak of 4.6×1010 molecules m2 s−1, which yields modeled isoprene mix-
ing ratios less than 10 pptv. The VOC speciation is defined according to NAEI and the
total peak emission of carbon via VOCs (excluding isoprene) is 2.3×1012 carbon atoms20

m−2 s−1 and the average emission is 1.2×1012 carbon atoms m−2 s−1. Boundary layer
dynamics are described with a prescribed variability in mixing height ranging from 500–
1500 m and mixing between the boundary layer and free troposphere equivalent to a
constant 10 % mass exchange per hour. Background free tropospheric concentrations
of long lived species are assumed to remain constant, and are defined in Table 1. The25

box model is situated at 33◦ North and is run from 30 June to 2 July and has a humidity
of 1.62 %, equivalent to the Southern Californian coastal region.
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The model is run under a range of photochemical conditions. This is achieved by
varying the NO emissions across 9 different scenarios that span the full range of mod-
eled ozone response with respect to changing NOx concentration. For the purposes
of the emission inversion we define our ozone precursor emissions in a simplified form
(excluding emitted species not considered in the inversion) as5

φi (t)=xiEi (t), i =NO,CO,VOC (1)

where xi are the time independent emission scaling factors for the emitted species,
i , and Ei (t) are the emissions with a prescribed and repeating diurnal cycle for each
emitted species. The emission inversion solves for, xi , the time independent emission
scaling factors, which can be represented as a vector, x, for the emitted species, i , as10

shown by

[x]i =xi , i =NO,CO,VOC (2)

The variability of ENO(t) is shown in Fig. 2 and this variability is represented by

Ei (t) = εik(t) (3)

where k(t) is the temporal variability emission factor for all of the emitted species15

and εi is the time independent emission for each species. Note then that all of the
species emissions, Ei (t), share the same temporal variability. The variability of k(t)
is shown in Fig. 1. In our model simulations εNO is 4.8×1010 molecules m−2 s−1, εCO

is 2.6×1012 molecules m−2 s−1, and εVOC is 4.3×1010 molecules m−2 s−1 where in the
emission inversion calculations we represent VOC emissions via ethene emissions.20

We define a range of different k(t) scenarios in order to probe the emission solution
sensitivity to diurnal emission variability and this variability is shown in Fig. 1. The
different scenarios that we use are described in Sect. 2.5.
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In the emission inversion calculations we represent VOC emissions via ethene emis-
sions. k(t) is 1.89, and thus while εi is an important model parameter it is hard to relate
to the total daily emission burden. The average emissions are therefore a factor of 1.89
larger than εi . In the case of NO, E (t)NO is 9×1010 molecules m−2 s−1. The scalings

used xNO = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, and 2.5] lead to a range in E (t)NO5

between 4.5×1010 and 2.3×1011 molecules m−2 s−1, and to modeled peak NOx con-
centrations ranging between 4.0 ppbv and 24.0 ppbv (peak concentrations from 1 to
11.3 ppbv for NO and 3 to 16.9 ppbv for NO2). These NO emission scalings are cho-
sen to represent a wide range of photochemical conditions and given the VOC burden
in the model scalings 0.5, 0.75 and 1.0 represent NOx limited conditions, 1.25, 1.5 and10

1.75 represent the transitional conditions, and 2.0, 2.25, and 2.5 represent VOC limited
conditions. For CO and the reactive VOC (ethene) E (t)CO is 5×1012 molecules m−2 s−1

and E (t)VOC 8.2×1010 molecules m−2 s−1. Given the latitude, humidity, dominance of
the VOC burden from anthropogenic VOCs, and range of modeled NOx concentrations
these model runs can be viewed as somewhat analogous to a range of environments15

spanning the wider urbanized Southern Californian region. The emissions of CO and
VOCs lead to modeled peak concentrations of CO and HCHO ranging between 590
and 820 ppbv and 6.5 and 8.1 ppbv, respectively.

2.3 Forecasting framework and 4-D-variational data assimilation

Several NOx emissions scenarios are simulated to cover a wide range of photochemical20

conditions (xNO = 0.5–2.5). Each emission scenario is represented mathematically as
a forward model, F(x,t), which are the concentrations as a function of time evaluated at
emissions x. Three observing scenarios were studied: CO and NO2 (CN scenario); O3,
CO, and NO2 (OCN scenario); and HCHO, CO, and NO2 (HCN scenario). The model
true state is sampled at 3 hourly intervals in the standard scenarios (used as default25

unless specified) and at intervals between 1 and 18 h in scenarios characterizing the
impact of observing frequency on prediction error. The sampled species concentrations
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are combined with an additive noise model to generate the pseudo observations, y,
represented by

y =F(x,t)+n (4)

where n is the noise

n=F(x)×β×r.n. (5)5

and where F(x) is the average species concentration (values shown in Table 2), β
is the noise scaling factor, and r.n. is a random number with a gaussian distribution,
a standard deviation of 1, and a mean of zero. Figure 3 shows a schematic of how
we generate the pseudo observations, y, from the forward model, F(x), and how the
pseudo observations of ozone relate directly to the true ozone variability. The modeled10

concentrations for all species and times resulting from F(x) can be represented as a
vector, q,

q=F(x,t) (6)

or for specific species, z, at time, t, as qz(x,t),

qz(x,t)= [F(x,t)]z (7)15

The contents of the vector, z, vary depending on the observing scenario. Note that in
the case of Fig. 3 the pseudo observations are generated from qO3

(x,t). We define a
priori emission scaling factors, xa, with specified errors (Table 3 provides a summary
of the values of x used to generate both x and xa), which are combined with the model
to yield the a priori model state, F(xa). Note that within our framework the a priori is20

also the initial guess.
The assimilation is started at the first iteration with the forward model using the initial

guess and is thus described as F(xa) after one iteration. A cost function, which is a
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scalar, J(x), is then evaluated

J(x)=
1
2

((y−F(x))TS−1
n (y−F(x))+ (x−xa)TS−1

a (x−xa)) (8)

where Sa is the a priori constraint matrix and Sn is the observation error covariance.
The 4-D-variational data assimilation method seeks the solution for x, x̂, that minimizes
J(x)5

x̂=min
x

J(x) (9)

such that the gradient of the cost function with respect to x is zero if the solution x̂ is
equal to the true state (though this is never achieved in practical circumstances)

∇xJ =KTSn(y−F(x̂))−S−1
a (x̂−xa)=0 (10)

where K is the Jacobian matrix (see Eq. 15) describing the forward model response to10

perturbations to the emission parameters, and ∇xtJ is the adjoint sensitivity (Daescu
et al., 2003; Sandu et al., 2003b), calculated by the Rosenbrock solver (Eller et al.,
2009), which indicates the sensitivity of the cost function to the emission parameters.
The cost function and its adjoint senitivities are passed to the quasi-Newton L-BFGS
algorithm (Zhu et al., 1997). The L-BFGS algorithm iteratively determines the optimal15

state of x, x̂, that minimizes the difference between the model and observations subject
to the a priori constraints.

Using the estimated emissions, x̂, the forward model, F(x̂), provides the air quality
prediction of the ozone concentration, qO3

(x,t), on the afternoon of the 3rd day of
the simulation during the prediction and monitoring period. Figure 2 shows how the20

a priori emissions, xa, relate to the true emissions x, and the posteriori emissions,
x̂, after the 4-D-variational data assimilation, as well as the a priori, the true and the
posteriori ozone levels (i.e., qO3

(xa,t), qO3
(x,t), and qO3

(x̂,t), respectively). Figure 2
therefore demonstrates the mechanism by which the forecasting framework improves
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the forward model ozone predictions, i.e., by an optimization of the ozone precursor
emissions. The left panel of Fig. 2 shows the a priori emission error for NO emissions
and the right panel shows the posteriori NO emission error. The posteriori emission
parameter error can be defined more generally as a vector x̃.

x̃= x̂−x (11)5

Figure 4 provides an example representation of the ozone prediction, qO3
(x̂,t), relative

to the true state, qO3
(x,t), during the prediction and monitoring period on the third

day. Figure 5 shows a full representation of the 4-D-variational assimilation results,
the pseudo observations, the a priori and initial guess ozone, the ozone true state and
the posteriori ozone prediction. In Fig. 5 E represents the posteriori ozone prediction10

error at time, tµ (tµ is 15:00 LT on day 3 during the prediction and monitoring period),
defined by

E =qO3
(x̂,tµ)−qO3

(x,tµ) (12)

and in both Figs. 4 and 5 G represents the a priori ozone prediction error defined by

G =qO3
(xa,t

µ)−qO3
(x,tµ) (13)15

Table 4 shows the values of E and G calculated using the 4-D-variational data assim-
ilation. The air quality prediction error over the entire prediction and monitoring period
for each of the species, z, can be defined as a vector, q̃[
q̃z

]
j =qz(x̂,tj )−qz(x,tj ) ,j =3,6......21,24 (14)

where j is the hour of day on the 3rd day during the prediction and monitoring period.20

The Jacobian matrix is redundant within 4-D-variational data assimilation, but it can
help characterize the uncertainties on x̃ and q̃. Therefore it is advantageous to de-
termine K. For large systems such as global and regional chemical transport models
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it is impractical to calculate the Jacobian matrix. However, it is feasible to determine
the Jacobian for a small system such as a photochemical box model with a limited
state space. Within our framework we define each element of K as the forward model
response, ∂qz(x,t)/∂xi , at time, t, and for observed species, z, to perturbations in
emissions of species, i , in the case of the OCN scenario it is defined by5

K=



∂qO3
(x,t1)/∂xNO ∂qO3

(x,t1)/∂xCO ∂qO3
(x,t1)/∂xVOC

∂qO3
(x,t2)/∂xNO ∂qO3

(x,t2)/∂xCO ∂qO3
(x,t2)/∂xVOC

. . .

. . .

. . .
∂qO3

(x,tNt
)/dxNO ∂qO3

(x,tNt
)/∂xCO ∂qO3

(x,tNt
)/∂xVOC

∂qCO(x,t1)/dxNO ∂qCO(x,t1)/∂xCO ∂qCO(x,t1)/∂xVOC
∂qCO(x,t2)/dxNO ∂qCO(x,t2)/∂xCO ∂qCO(x,t2)/∂xVOC

. . .

. . .

. . .
∂qCO(x,tNt

)/dxNO ∂qCO(x,tNt
)/∂xCO ∂qCO(x,tNt

)/∂xVOC

∂qNO2
(x,t1)/dxNO ∂qNO2

(x,t1)/∂xCO ∂qNO2
(x,t1)/∂xVOC

∂qNO2
(x,t2)/dxNO ∂qNO2

(x,t2)/∂xCO ∂qNO2
(x,t2)/∂xVOC

. . .

. . .

. . .
∂qNO2

(x,tNt
)/dxNO ∂qNO2

(x,tNt
)/∂xCO ∂qNO2

(x,tNt
)/∂xVOC



=
∂F(x,t)

∂x
(15)

where K has dimensions Ni×N. Ni is the number of species in the emission factor state
vector, x and is thus always three. We define N as the total number of observations for
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all species

N = Nt ×Ny (16)

where Nt is the number of points in time the model perturbations are sampled and Ny
is the number of species whose perturbations are used in the Jacobian. In the case of
Eq. (15) z = O3, CO and NO2 therefore Ny = 3. z includes HCHO in the HCN scenario.5

Figure 6 plots columns of the Jacobian and it shows that ozone is more sensitive to
changes in emissions during the afternoon, and that CO and NO2 respond to changes
in emissions during the rush hour periods.

2.4 Uncertainty analysis

2.4.1 Overview10

We conduct an uncertainty analysis in order to characterize the performance of the
assimilation system under a range of different observing scenarios and photochemical
conditions. The uncertainty analysis has two separate foci: the estimation performance
of the emissions and the posteriori ozone prediction error. Note that there is a direct
synergy between these two analyses since uncertainties in the emissions estimate15

directly impact upon ozone prediction uncertainty. The diagnostics that we calculate in
the analysis of the emissions uncertainties include the posteriori emission parameter
error, the averaging kernel matrix, and the degrees of freedom of signal.

The Jacobian matrix, K, calculated using the forward model is central to the cal-
culation of the various statistics and diagnostics discussed in the following sections.20

The key assumption in using the Jacobian is that changes in the emissions can be
described approximately by (Rodgers, 2000)

F(x)−F(x+δx)≈Kδx (17)
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this assumption has been validated using finite differencing to compare to solutions
derived from the right side of Eq. (17).

2.4.2 Emission error characterization

We calculate various statistics to determine the emission estimation performance.
First, we determine the posteriori emission parameter error covariance, which is de-5

fined by (Rodgers, 2000)

E
[
x̃x̃

T
]
= (S−1

a +KTS−1
n K)−1 (18)

Next, we calculate the averaging kernel defined by

A= (S−1
a +KTS−1

n K)−1KTS−1
n K (19)

and the degrees of freedom of signal that is calculated via10

d.o.f .=det(A) (20)

where both of these diagnostics provide information on the resolution of the emission
retrieval, i.e., the ability of the estimate to uniquely distinguish between the emissions
of individual species. For example, low values in the diagonal of A for species, i , and
hence low values of d.o.f ., combined with a large width in the row of the averaging15

kernel for species, i , would indicate a low retrieval resolution and a diminished ability to
individually resolve the emission parameter of species, i . The columns of A represent
the sensitivity of the retrieved emission parameter to perturbations in the real emission
parameters. The diagonals also represent this sensitivity for the specific case of x̂i to
xi .20

2.4.3 Ozone prediction error characterization

Using the posteriori emission error we can determine the posteriori ozone prediction
error during the prediction time. In order to determine the posteriori ozone prediction
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error beyond the observation period in the prediction and monitoring period on day 3 of
the forward model run we need to define a new Jacobian matrix, K

′
. K

′
describes the

forward photochemical response to perturbations in the emissions at time, t, during the
prediction and monitoring period on the 3rd day. Note that K and K′ differ in that K only
describes the model response in the observation period as opposed to the prediction5

and monitoring period. Each element of K
′

is ∂qz(x,tj )/∂xi where j is the index of
time denoting when the model is sampled in the prediction and monitoring period on
the 3rd day. The posteriori prediction error covariance on the 3rd day for all species in
the vector, z, can be determined by

E
[
q̃q̃

T
]
=K′E

[
x̃x̃

T
]
K′T (21)10

2.5 Model applications

2.5.1 Overview

We conduct uncertainty analysis of the assimilation performance under different ob-
served species scenarios, observing frequencies, observing noise, and varying pho-
tochemical environment using the diagnostics of both emission parameter and ozone15

posteriori prediction error, averaging kernel, and degrees of freedom of signal. In addi-
tion, we support the uncertainty analysis with a series of supporting sensitivity analyses
used to test the robustness of our conclusions to methodological choices.

2.5.2 Uncertainty analysis

We calculate the diagnostics of both emission parameter and ozone posteriori predic-20

tion error, averaging kernel, and degrees of freedom of signal over the full range of
observing scenarios (CN, OCN, and HCN), the full range of NO emission scenarios
(xNO = 0.5–2.5 with increments of 0.25), and eight different levels of observing error:
1 %, 5 %, 10 %, 25 %, 50 %, 100 %, 250 %, 500 % (β = 0.1–5). The observing errors
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are absolute errors represented here as a percentage of the average species concen-
tration over all of the photochemical scenarios. The final analysis involves investigating
the sensitivity of posteriori ozone prediction error to observing frequency and to obser-
vation removal.

2.5.3 Supporting sensitivity analysis5

We demonstrate the usage and performance of the 4-D-variational data assimilation.
This model solves the non-linear estimation problem whereby it optimizes the ozone
precursor emissions across the full range of photochemical conditions (xNO=0.5–2.5)
for the CN, OCN and HCN scenarios whilst assuming low levels of observational error
(β = 0.1) represented in the observation error covariance matrix. Second, we probe10

the sensitivity of the success of emissions estimate, and hence the predictive model,
to a range of assumed emission diurnal profiles. We assume the following profiles se-
lected arbitrarily to test the model sensitivity: constant, sine wave, square wave, and
offsets of the existing profile by 1 and 2 h shifts both forward and backward in time.
Figure 1 shows the alternative emission variability profiles compared to the standard15

emission profile over the full diurnal period. These alternate emission profiles are taken
to represent the new true state (using xNO =0.75) and are used to generate the pseudo
observations (using β = 0.1). We then attempt the assimilation using the pseudo ob-
servations generated from the alternative emission scenarios whilst assuming that the
emissions temporal variability is the standard variability. The alternate emission pro-20

files test the robustness of the 4-D-variational data assimilation method to diurnal un-
certainty in the emissions. Finally, we test the sensitivity of the emission estimate and
the ozone forecast error to the ethene emission assumptions. Specifically, we conduct
a sensitivity test whereby we represent VOC emission uncertainties with uncertainties
in the emission of ethane, which is a less reactive VOC compared to ethene.25
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3 Results

3.1 Uncertainty analyses

3.1.1 Emission error characterization and ozone prediction error

We present results from the uncertainty analysis over scenarios CN, OCN, and HCN,
all nine NO emission scenarios, and the eight levels of observation error. These results5

includes the posteriori ozone prediction error (calculated by Eq. 21) and the posteriori
emission parameter error (calculated by Eq. 18). We will further characterize the emis-
sion estimate using the averaging kernel and degrees of freedom of signal diagnostics.
Figure 7 presents the posteriori ozone prediction errors across the complete range
of parameter space and, in each panel, the results from the three observing scenar-10

ios CN, OCN, and HCN. The three scenarios CN, OCN, and HCN all exhibit similar
general behavior in the derived posteriori ozone prediction errors: a first maximum
in ozone prediction uncertainty in the NOx limited scenarios (xNO = 0.5–0.75), with a
consistent minimum in ozone prediction error in the transition region that is both NOx
and VOC limited (xNO = 1.0–1.75), and a second larger maximum in ozone prediction15

uncertainty in the VOC limited regime (xNO =2–2.5). Scenario CN (observing only CO
and NO2) yields the highest posteriori ozone prediction uncertainties of the three sce-
narios across the range of NO emission scenarios. In both scenarios OCN and HCN
(observations of ozone, CO, and NO2 and HCHO, CO, and NO2) the inclusion of ozone
and HCHO observations, respectively, reduces the posteriori ozone prediction uncer-20

tainties. Scenarios OCN and HCN each exhibit subtly different perturbations to the
scenario CN (observations of CO and NO2) prediction errors; both scenario OCN and
HCN show significant improvement in the VOC limited emission scenarios (xNO = 2.0–
2.5) compared to scenario CN with each outperforming scenario CN by up to 2.4 ppbv.
Despite scenario HCN performing comparably to scenario OCN within the most VOC25

limited regimes (xNO >2.0), using the lowest of the VOC limited NO emission factor
(xNO = 2.0) scenario OCN outperforms scenario HCN by up to 1.4 ppbv. The largest
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improvements in ozone prediction errors of any scenario comparison (2.6 ppbv) occur
in scenario OCN compared with CN in the strongly NOx limited emission scenarios
(xNO = 0.5–1.0). In addition, scenario OCN also has lower posteriori ozone prediction
error compared to the HCN scenario under the NOx limited conditions by up to 1.9 ppbv.

We will now focus on explaining these differences in posteriori ozone prediction er-5

ror highlighted above, i.e., the differences that occur under VOC limited conditions
(xNO2.0–2.5) between the OCN and HCN scenarios and the CN scenario of up to
2.4 ppbv, the difference of 1.4 ppbv between the OCN and HCN scenarios using the
lowest of the VOC limited NO emission factor (xNO =2.0), and the difference of 2.6 ppbv
and 1.9 ppbv between the OCN and CN scenarios, and OCN and HCN scenarios,10

respectively, under NOx limited conditions. To gain further insight into this behavior
Figs. 8 and 9 show the posteriori error for xNO and xVOC. Note that the posteriori error
for xCO is invariant with respect to the photochemical regime and is therefore unable to
explain any of the observed variability of ozone prediction error over varying xNO.

Figure 8 shows that scenario HCN is able to reduce xVOC posteriori errors over the15

largest range of NO emission scenarios, followed by scenario OCN, and scenario CN.
This reduction in VOC emission uncertainty in scenario HCN explains why it shows
reduced posteriori ozone prediction error (by up to 2.4 ppbv) compared to the CN sce-
nario under VOC limited conditions. Despite HCHO observations overall providing a
better constraint on VOC emission uncertainties under all conditions this improved20

constraint only leads to lower posteriori ozone prediction error compared to the OCN
scenario in the transition region between the NOx and VOC limited regimes (xNO=
1.0–1.75), and under the most VOC limited conditions (xNO >2.0). This inconsistency
between the ozone prediction error and the posteriori error for xVOC, when comparing
the OCN and HCN scenarios at xNO = 2.0, occurs because under VOC limited condi-25

tions the posteriori ozone prediction error is also sensitive to the posteriori NO emission
uncertainties and ozone and HCHO have different abilities to constrain NO emission
uncertainties. As shown by Fig. 9 ozone is better able to constrain NO emission uncer-
tainties as compared with HCHO under both NOx limited and VOC limited conditions.
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Note that ozone is still sensitive to changes in the NO emissions within the VOC limited
regime, but the sensitivity is negative, i.e., increases in NO emission lead to reduction
in ozone concentrations. Therefore, the posteriori ozone prediction uncertainties in the
VOC limited regime are still sensitive to posteriori NO emission uncertainties, which
is why scenario OCN has a lower posteriori ozone prediction uncertainty in the VOC5

limited regime as compared to scenario HCN by 1.4 ppbv. This improved estimation of
xNO within the OCN scenario also explains why it outperforms the CN scenario (by up
to 2.4 ppbv) under VOC limited conditions (xNO2.0–2.5) despite showing higher VOC
emission uncertainty compared to the HCN scenario.

Figure 9 shows that the OCN scenario exhibits the smallest posteriori NO emission10

parameter errors of any of the other observing scenarios. This is particularly pro-
nounced under VOC limited conditions and under NOx limited conditions. In the case
of NOx limited conditions, this improvement in NO emission parameter error in the OCN
scenario compared to the CN scenario leads to the observed difference of 2.5 ppbv in
the posteriori ozone prediction errors between these two cases. These differences15

can be attributed to the addition of ozone observations in the OCN scenario and the
fact that ozone sensitivity to NO emissions under both NOx limited and VOC limited
conditions allows NO emissions to be better constrained. Additionally, improvements
in posteriori NO emission parameter error under NOx limited conditions lead to direct
improvements in posteriori ozone prediction error due to the sensitivity of the ozone to20

changes in NO emissions. This same effect leads to the OCN scenario out performing
the HCN scenario under NOx by 1.9 ppbv since HCHO observations do not constrain
NO emissions very well.

We now briefly explore the benefits of combing the observed species from scenarios
OCN and HCN. Figure 10 shows that a scenario combining ozone and HCHO obser-25

vations with CO and NO2 observations can improve ozone prediction errors by up to
2.9 ppbv and 3.1 ppbv under NOx and VOC limited conditions, respectively, compared
to the CN scenario. Combining ozone and HCHO observations improves ozone pre-
diction errors by up to 0.3 ppbv and 0.8 ppbv under NOx and VOC limited conditions,
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respectively, compared to the OCN scenario, which is a modest improvement. The
differences between the ozone and HCHO combined scenario and the OCN scenario
under VOC limited conditions further highlight the potential for HCHO observations to
improve ozone prediction errors under the most VOC limited conditions.

It should be noted that scenario HCN uses an assumption regarding the relative ob-5

serving errors of HCHO versus ozone, which based on the specifics of the instrumen-
tation, magnitude of absorption cross-section, and interferences from other absorbing
gases, and the relative trace gas concentrations, are expected to favour ozone having
lower observation errors. Therefore, we utilize a scenario where β is scaled upwards
independently for HCHO by 50 % relative to the other species. This assumption is ex-10

plored in a sensitivity study and the results from this are shown in Fig. 11. Figure 11
shows that scenario HCN only has lower posteriori ozone prediction uncertainties over
the full range of NO emission scenarios under the optimistic scenario of lower HCHO
observation uncertainties, and that in the other scenarios, that we assume would be
closer to reality, scenario HCN only out performs scenario OCN in the transition region15

between the NOx and VOC sensitive regimes. Under the assumptions of lower ozone
observing uncertainty OCN out performs scenario HCN in the NOx and VOC limited
regimes by up to 1.9 ppbv.

3.1.2 Averaging kernel and degrees of freedom of signal

Using Eq. (19) we can calculate the averaging kernel matrix. The diagonal represents20

the sensitivity of the retrieved parameter for a particular species, i , to changes in the
real emission parameter for species, i . Figure 12 shows the respective diagonals of the
averaging kernel (for xVOC and xNO) varying in a manner consistent with the posteriori
parameter errors as shown in Figs. 8 and 9. A comparison of the lower panels indicates
that the NO emission parameter estimate using the OCN observing scenario is more25

sensitive to the true state of the NO emission parameter under both NOx limited and
VOC limited conditions than any of the other observing scenarios. The top panels show
that the VOC parameter estimate shows the highest sensitivity to the true state of the
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VOC emission parameter using the HCN observing scenario.
The variability of the degrees of freedom of signal with both xNO and β is shown

in Fig. 13 for both the OCN and HCN scenarios. Figure 13 shows that the HCN sce-
nario is better able to uniquely retrieve and resolve the 3 separate emission parameters
compared to the OCN scenario. This is because HCHO provides a better constraint5

on VOC emissions over a wider range of xNO and β. However, ozone in general con-
strains ozone precursor emissions across a wider a variety of emission parameters,
specifically for xNO, which allows ozone observations to yield better posteriori ozone
prediction errors. The OCN scenario constrains the NO emission parameter better un-
der both NOx and VOC limited conditions. The OCN scenario has a decrease in the10

degrees of the freedom of signal under NOx limited conditions due to the lack of sensi-
tivity of the retrieval when using these observations to the VOC emission parameter.

3.1.3 Observing time and observing frequency

Using scenario OCN with β=0.25, we conduct two separate sensitivity analyses to in-
vestigate the effects of observing time and observing frequency upon posteriori ozone15

prediction error. Figure 14 shows how removing the observations for all observed
species (ozone, CO and NO2) at specific times results in increases in the posteriori
ozone prediction errors in that perturbed scenario. Figure 14 shows posteriori ozone
prediction errors are most sensitive to the removal of observations during the day par-
ticularly during the high emission periods in the morning and afternoon rush hours and20

particularly so during the period of elevated ozone in the afternoon. The timing and
magnitude of the sensitivity and its peak to observation removal varies according to
the 9 NO emission scenarios as well. In the more NOx limited scenarios, xNO = 0.5–
1.0, the sensitivity to observation removal is distributed relatively evenly over the entire
day including both rush hours and peaks close to 15:00 LT. In the VOC limited regimes,25

xNO = 1.75–2.5, the sensitivity to observation removal is more tightly distributed within
the afternoon period and peaks between 15:00 LT and 18:00 LT even showing a broad
maximum out to 20:00 LT under the most VOC limited conditions. The temporal vari-
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ability of the maximum sensitivity to observation removal with changing photochemical
regime is due to the timing of afternoon peak ozone concentrations. This is because
across all of the photochemical regimes maxima in ozone sensitivity to perturbations
in emissions coincide with the daytime peak ozone concentration (see Fig. 6). Ob-
servations made during these key periods are therefore better able to constrain the5

emissions uncertainties. Ozone concentrations peak later in the afternoon under more
VOC limited conditions compared to the NOx limited conditions thus explaining some
of the variability in maximum sensitivity to observation removal with changing photo-
chemical regime.

Figure 15 shows how posteriori ozone prediction errors vary with changing observing10

frequency. Increasing observing frequency causes the largest decreases in posteriori
ozone prediction uncertainty in the VOC limited regime and to a lesser extent in the NOx
limited regime due to the sensitivity of ozone prediction error to unresolved emission
parameter errors in those regimes.

3.2 Supporting sensitivity analyses15

3.2.1 4-D-variational data assimilation

We run the full data assimilation forecasting across the full range of 9 xNO scenarios
(0.5–2.5) and each observing scenario (CN, OCN, and HCN) and the results from
these experiments are shown in Table 4. The results shown in Table 4 indicate that
scenarios OCN and HCN (observations of ozone, CO, and NO2 and ozone, CO, NO2)20

yield acceptable prediction error under these idealised conditions (β = 0.1) within this
prototype framework for all photochemical conditions. The more limited success of
scenario CN (observations of CO and NO2) is due to the lower sensitivity of CO and
NO2 observations to the emissions of NO2, and VOCs. The magnitude of the adjoint
sensitivities guides the L-BFGS algorithm to the global minimum. In cases where the25

adjoint sensitivities are low (e.g., in VOC limited conditions using the CN scenario) the
optimization routine may only be able to find a non-global minimum, which leads to
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larger posteriori emission factor errors, x̂−x.
Table 4 indicates that there is variability of posteriori peak ozone prediction error over

changing photochemical regime and xNO for each observing scenario CN, OCN, and
HCN. This variability with xNO is due in part to the variations in modeled ozone sensitiv-
ity to the different ozone precursor emission parameters, ∂qO3

(x,t)/∂xi , and the pos-5

teriori emission parameter errors (i.e., x̂−x). Generally, large sensitivity of predicted
ozone to the emissions of ozone precursors, ∂qO3

(x,t)/∂xi , combined with unresolved
ozone precursor emission parameter errors, x̂−x, can lead to larger posteriori peak
ozone prediction error. For instance, in the NOx limited regimes (xNO = 0.5–1.0) large
residual error in the element of x̂ corresponding to NO emissions would lead to large10

posteriori ozone errors.
One example of this phenomenon occurs in the case of photochemically VOC limited

NOx emission scenarios (xNO = 1.75–2.5). Table 5 shows the variability of posteriori
VOC emission errors with xNO and observing scenario. For observing scenario CN
there is large unresolved error in xVOC (Table 5), and this leads to larger posteriori15

ozone prediction error as compared to scenarios OCN and HCN (see Table 4), which
are better able to resolve errors in VOC emissions.

Thus, there are a rather complex set of factors interacting to cause these result-
ing posteriori prediction errors and the analysis of the results is limited to identifying
relationships between the observing scenario, the photochemical regime, the adjoint20

sensitivities and the resulting ozone posteriori prediction error. This demonstrates the
utility of the analytical model in allowing a far more in-depth analysis. Overall, the
4-D-variational data assimilation framework seems capable of resolving emission un-
certainties and in turn reducing ozone prediction error. This successful demonstration
of the framework is a necessary but not sufficient condition for systems based upon25

more complex photochemical models to have utility and ozone predictive skill.
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3.2.2 Probing emission solution sensitivity to diurnal emission variability

We investigate the sensitivity of the forward photochemical model ozone mixing ratios,
the 4-D-var ozone prediction and the 4-D-var emissions estimate to the underlying as-
sumptions of the diurnal variability of emissions using 7 perturbed scenarios, and the
results from this analysis are presented in Table 6. Both the forward model and the 4-5

D-var were conducted for xNO = 0.75 and the 4-D-variational data assimilation results
were generated using pseudo observations from the perturbed emission scenarios
(defined by Fig. 1) with β = 0.1. Table 6 indicates that the forward model shows peak
ozone mixing ratios diverging from the base case run (standard assumed emission
variability with xNO =0.75) by up to 10.6 ppbv and that the forward model ozone mixing10

ratios are sensitive to the assumption of the diurnal emission variability. In addition,
Table 6 shows that the 4-D-variational data assimilation is able to achieve posteriori
peak ozone prediction errors of up to 2.4 ppbv relative to the true state, as defined
by the perturbed scenario, despite using the un-perturbed diurnal emission scenario
as its emission variability. Despite the relative success of the posteriori peak ozone15

prediction (only a maximum ozone prediction error of 2.4 ppbv) under these more chal-
lenging conditions the assimilation performs poorly in terms of the posteriori emission
factor error. Errors range up to 0.46 (18–92 %), 0.17 (17 %), and 7.0 (108 %) for xNO,
xCO, and xVOC (relative to true scaling factors of 0.5–5.0, 1.0, and 6.5, respectively) and
thus emission inversion success is strongly affected by errors in the assumed diurnal20

variability of ozone precursor emissions. Thus, in summary, we demonstrate forward
model ozone sensitivity to perturbations in the diurnal variability of ozone precursor
emissions, relative insensitivity of the 4-D-variational data assimilation posteriori pre-
diction error to mismatches in the assumed versus observed diurnal variability of ozone
precursor emissions, and sensitivity of the emissions inversion success to mismatches25

in the assumed versus true emissions variability.
Having demonstrated that the photochemical box forward model ozone mixing ra-

tio is sensitive to changes in the diurnal variability of emissions we also explore what
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the real-world variability is in terms of day-to-day emission magnitude and apparent
emission profile for a specific case. This investigation is necessary because we as-
sume that there is no day-to-day variation in either emission magnitude or the profile
of the emissions. Observation data for ozone, CO and NO2 collected by the South
Coast Air Quality Monitoring District at Wilson Ave., Pasadena (see Fig. 16) show that5

this assumption is valid for a consecutive three day period consisting of Wednesday,
Thursday, and Friday. Our assumption of no day-to-day variability in ozone precursor
emissions is reasonable for this region. However, our assumptions regarding day-to-
day emissions variability would be unreasonable for a consecutive three day period
covering part or all of the weekend due to the variability in ozone precursor emissions10

between the working week and the weekend. Though our assumption of no day-to-
day emission variability would provide an unrealistic description of the true emission
variability for a simulation period covering the mid-week and weekend the previous
analysis shows that the 4-D-variational data assimilation framework can still provide
acceptable ozone forecasts in the presence of either incorrect emission magnitudes or15

emission variability profiles.

3.2.3 Emission inversion and ozone predictive skill sensitivity to VOC species
selection

Figure 17 shows the results from the analysis probing emission solution sensitivity to
choice of VOC used in the emission inversion. In this study we substitute ethene emis-20

sion uncertainty for ethane emission uncertainty. Figure 17 shows that the VOC emis-
sion inversion is severely degraded by building the Jacobian by perturbing xethane as
opposed to xethene across scenarios CN, OCN and HCN. The posteriori xVOC parame-
ter error relaxes to our chosen a priori of 1.5 to within 1 significant figure for most of the
scenarios explored, but note that this does not affect ozone prediction error (Fig. 17)25

since the degraded VOC emission uncertainty is mitigated by the lower model sensitiv-
ity to that uncertainty because of the decreased reactivity and decreased ozone yield
resulting from ethane oxidation relative to ethene.
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4 Discussion

4.1 Observed species

The variability of ozone prediction error with both photochemical regime and observing
species scenario (CN, OCN and HCN) is complex and no single observed species is
ideal for all photochemical conditions. Certain pairs or groups of observations have5

greater impact given their complementary nature across a range of scenarios. Under
NOx limited conditions ozone prediction error is strongly controlled by the posteriori NO
emission errors and therefore observations of NO2 and ozone would be highly advan-
tageous. Ozone provides a particularly good constraint upon NO emissions under very
NOx limited conditions. The value of NO2 observations in constraining NO emissions10

improves as the NOx lifetime increases under higher xNO and the photochemical con-
ditions become less NOx limited. Much of the troposphere is in fact highly NOx limited
outside of the most polluted of urban areas (Duncan et al., 2010), e.g., in pristine, rural,
and most suburban locations within the United States where there is plentiful vegeta-
tion and therefore significant biogenic VOC emissions. Under VOC limited conditions15

ozone prediction error is sensitive to both posteriori xNO (due to the negative sensitivity
of ozone to NOx) and xVOC errors and thus observations of ozone, HCHO and NO2 al-
low significant improvements in ozone prediction error. Ozone allows constraints to be
placed upon VOC and NO emission uncertainties, HCHO provides an excellent con-
straint upon reactive VOC emissions, which due to their reactivity are more relevant to20

air quality compared to less reactive VOCs, and NO2 provides an excellent constraint
upon NO emissions (more so than under NOx limited conditions due to the longer NOx
lifetime). Despite the fact that large geographical portions of the US are NOx limited a
disproportionately large percentage of the populous live within or are exposed to ozone
arising from VOC limited conditions due to the significant extent of urbanization within25

the US. Large urbanized areas of the South West that lack significant native vegetative
biomass typically have a larger VOC limited regime that extends over the urban as well
as sub-urban areas. In contrast, US cities in the East are located in regions with of-
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ten times dense vegetative biomass (e.g., Atlanta) and thus the VOC limited region is
far more geographically limited to the urban center itself. Therefore, improving ozone
predictive skill within VOC limited conditions won’t yield forecasting improvements over
a wide geographical area but will yield improvements within certain regions with large
populations where improved ozone predictive skill would be advantageous.5

Our findings with respect to the utility of NO2 and HCHO observations for constrain-
ing NOx and VOC emissions, respectively, and in turn for improving ozone estimation
are broadly consistent with the findings of Zhang et al. (2008), which used satellite
observations of NO2 and HCHO in conjunction with 4-D-variational data assimilation to
solve for NO2 and HCHO emissions and to improve the model’s ozone estimation. This10

confirms that frameworks of this nature have the potential to function operationally and
to improve air quality forecasting.

There are two further advantages to observations of ozone and HCHO made under
VOC limited conditions. Often times plumes of NOx polluted and VOC limited air can
be exported from the VOC limited centralised urban region into sub-urban areas that15

are NOx limited, and this can lead to significant variability in the photochemical regime
in the regions surrounding an urban center. Therefore, observations of HCHO and
ozone in addition to NO2 observations could help to understand such events and in
turn reduce ozone prediction errors. The second reason is that observations of ozone
and HCHO can place constraints upon reactive VOC emissions, and in many cases20

that information regarding emissions can allow valid assumptions to be made regard-
ing the geographical variability of VOC emissions considering land types and density
of urbanization. However, often times this will extend the information regarding the
geographical distribution of VOC emissions into NOx limited regions. Although pos-
teriori VOC emission uncertainties have the largest impact on ozone prediction error25

under VOC limited conditions, posteriori VOC emission uncertainties can still impact
ozone prediction errors under NOx limited conditions, so constraining VOC emission
uncertainties will create benefits to ozone forecasting.
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4.2 Temporal considerations

There is strong sensitivity of ozone prediction error to observation removal in the day-
time, particularly in the afternoon, and therefore observations made during the day
present greater returns in terms of improved forecasting ability. There is some tempo-
ral variability in the sensitivity of prediction error between the different xNO scenarios.5

The NOx limited regimes favour observations made throughout the day with increased
observing density close to 15:00 LT. The VOC limited regimes favour a greater concen-
tration of observations within the afternoon even up to 6pm in the most VOC limited
cases.

4.3 Implications for emission inversion10

Aside from the relevance of these results to GEO mission planning and air quality
forecasting in general, we believe these results are also relevant for emission and
flux estimation via inversion methologies. Our prototype framework is mechanically
very similar to recent work using 4-D-variational data assimilation methologies (Henze
et al., 2009; Stavrakou et al., 2009; Kopacz et al., 2010) using chemistry transport15

models that have focused on emission inversion. Since much of the emission inversion
performance shown in this study is driven by the photochemistry, and the fundamen-
tal photochemical behaviour shown by our mechanism should be reproducable across
all photochemical mechanisms it is reasonable to suppose that some of our conclu-
sions are relevant to future work conducted using 4-D-variational data assimilation in20

emission inversion studies. From this premise, we recommend that emission inversion
studies for NOx utilize both observations of NO2 and ozone observations since ozone
observations add information to the xNO estimation under both strongly positively and
negatively NOx limited conditions and NO2 observations constrain emission parame-
ter uncertainties the most under less NOx limited conditions through to the negatively25

sensitive regime, so these observations complement each other. Likewise for emission
inversions of VOCs we recommend observations of HCHO and ozone since HCHO
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observations can constrain VOC emission uncertainties under a wide variety of photo-
chemical conditions and ozone can constrain VOC emission uncertainties under VOC
limited conditions.

It should be noted that the conclusions regarding VOC emission inversion are sen-
sitive to our choice of representing VOC emission uncertainties with ethene. The5

success of the VOC emission inversion is significantly limited by solving for ethane
emission uncertainties as opposed to ethene emission uncertainties. This inability to
constrain unreactive VOC emissions is due to the lack of impact on secondary chemi-
cal species such as HCHO. The inability to place useful constraints on unreactive VOC
emissions is one reason why previous emission inversion modeling studies have fo-10

cused on constraining reactive VOCs like isoprene (Millet et al., 2006, 2008; Palmer
et al., 2003, 2006).

In the supporting sensitivity analysis probing emission solution sensitivity to diurnal
emission variability we demonstrate that emission inversions are potentially highly sen-
sitive to the assumed variability of the emissions and that even perfect observations15

would lead to such errors. In our system such emission inversion errors would be hard
to characterize in the absence of any information regarding the true state of the emis-
sions variability. We recommend that such uncertainties should be considered and
characterized in emissions inversion studies. Currently diurnal emission variabilities
are determined in the process of building bottom-up emission inventories. Although20

our prototype assimilation system can only currently solve for time independent scaling
factors it could be modified to solve for time dependent scaling factors and the diurnal
emissions variability. Future assimilation forecasting systems should also possess this
ability to solve for time dependent emission scaling factors. Increased temporal sam-
pling density provided by GEO sounding satellites could place increased constraints25

upon temporally varying emissions as opposed to current LEO satellites.
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5 Conclusions

We demonstrate the relevance of a prototype air quality forecasting box model to fu-
ture air quality forecasting systems that might utilize state of the art assimilation and
GEO orbiting satellite observations. Based on this framework, we show that ozone
can be forecast within idealized conditions when using observing scenarios consisting5

of observations of ozone, CO, NO2 and HCHO, CO, and NO2, as a function of pho-
tochemical conditions. Uncertainties in ozone prediction are relatively insensitive to
assumed diurnal emission variability even though the emission fluxes are sensitive to
the diurnal profile.

Results from analytical calculations indicate that combined observations of ozone10

and NO2 over regions within NOx limited photochemical conditions will yield the largest
decreases in ozone prediction error whereas observations of ozone, HCHO and NO2
observations reduce ozone prediction errors the most under VOC limited conditions.
Within the transition region between NOx and VOC limited conditions, observations
of HCHO and NO2 reduce ozone prediction errors the most though posteriori ozone15

prediction errors are at their minimum within this photochemical region. Overall we find
that no single species observation is capable of yielding acceptable ozone prediction
error under all photochemical conditions. Further, observing only CO and NO2 limits
ozone predictive skill across both NOx and VOC limited photochemical regimes. Our
results indicating the potential for observations of NO2 and HCHO to constrain NOx20

and VOC emissions are in turn improve ozone prediction errors are consistent with
previous work by Zhang et al. (2008)

If instead the objective and focus is upon optimizing ozone precursor emissions,
then emissions of NOx are best optimised using a combination of NO2 and ozone
observations, and VOC emissions are best optimized using both HCHO and ozone25

observations. Observations of HCHO provide a better constraint on VOC emission
uncertainties compared to ozone under all photochemical conditions, but they only
improve posteriori ozone prediction error relative to ozone observations in the transition
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region. Investigations probing the temporal frequency of observations and the degree
to which observations made at different times of day affect prediction error indicate that
increasing the observing frequency always leads to decreases in prediction error and
that observations made during the afternoon through to the early evening decrease
prediction error the most.5

Observations within scenarios OCN and HCN with uncertainties of up to an absolute
error equivalent to 33 % of the average over polluted regions can achieve adequate
ozone prediction errors (i.e., within 0–5 ppbv for most photochemical scenarios) within
our prototype framework. This is a necessary but not sufficient condition in order for
these observations to achieve acceptable ozone prediction error in more complex air10

quality forecasting systems.
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Table 1. Background free tropospheric concentrations of trace gases mixed into the boundary
layer in the photochemical model.

Chemical Species Background Mixing Ratio

Ozone 30 ppbv
NO 100 pptv
NO2 50 pptv
CO 80 ppbv
CH4 1.76 ppm

NMHCs 100–200 pptv each
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Table 2. Values of F(x) used to calculate y.

F(x̂) Mixing Ratio

Ozone 44.4 ppbv
CO 620 ppbv
NO2 6.5 ppbv

HCHO 3.9 ppbv
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Table 3. Values of x and xa used in the 4-D-variational data assimilation model.

x xa

NO CO VOC NO CO VOC

0.5 1.0 6.5 0.475 0.95 0.1
0.75 – – 0.7125 – –
1.0 – – 0.95 – –
1.25 – – 1.1875 – –
1.5 – – 1.425 – –
1.75 – – 1.8375 – –
2.0 – – 2.1 – –
2.25 – – 2.3625 – –
2.5 – – 2.625 – –
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Table 4. Initial peak ozone predictions, true state peak ozone, initial guess ozone prediction
error, and prediction error across the full range of xNO and the three observing scenarios CN,
OCN and HCN. The ozone values and absolute differences in ozone mixing ratio are listed for
15:00 LT during the final day of the prediction model. Figures 4 and 5 show what E and G
represent.

xNO Scenario qO3
(xa,t

µ) (ppbv) qO3
(x,tµ) (ppbv) G E (ppbv) E (ppbv) E (ppbv)

(ppbv) Scenario CN Scenario OCN Scenario HCN

0.5 72.7 79.3 −6.6 −6.3 −0.4 −1.0
0.75 81.3 89.7 −8.4 −8.3 −0.5 −0.7
1.0 85.2 96.3 −11.1 −4.5 −0.6 −0.5

1.25 85.5 100.3 −15.1 −3.3 −0.6 −0.3
1.5 79.7 101.5 −21.8 −4.2 −0.5 −0.1

1.75 66.1 98.7 −32.6 2.2 0.3 −0.2
2.0 52.8 89.0 −36.2 1.9 0.3 −0.2

2.25 43.6 73.0 −29.4 1.4 0.3 −0.2
2.5 37.1 58.8 −21.7 1.0 0.3 −0.2
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Table 5. The posteriori xVOC error resulting from the 4-D-variational data assimilation. The
table shows the variablity of the posteriori VOC emission error both with observing scenario
and NO emission factor. Errors are represented as absolute errors of xVOC.

x̂VOC - xVOC
xNO Scenario CN Scenario OCN Scenario HCN

0.5 −6.4 0.40 8.5×10−2

0.75 9.1 0.33 5.0×10−2

1.0 −2.7 −0.01 3.3×10−2

1.25 −1.6 9.87 −2.6×10−2

1.5 −1.7 2.71 −3.6×10−2

1.75 0.77 0.21 2.4×10−2

2.0 0.54 0.20 3.3×10−2

2.25 0.40 0.18 4.5×10−2

2.5 0.35 0.18 4.8×10−2
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Table 6. Results from a study exploring the sensitivity of the 4-D-variational data assimilation
forecast of peak ozone to varying assumptions regarding, k(t), the diurnal variability of ozone
precursor emissions. Note that in each scenario the cumulative daily emission burden remains
constant for each scenario and thus each scenario has identical E (t). The table shows (in ppbv)
the modeled ozone for each alternative k(t) scenario, the differences in true state peak ozone
between these alternative k(t) scenarios and the standard k(t) scenario, and the absolute pos-
teriori ozone prediction errors of these alternative k(t) scenarios relative to both the standard
and alternative k(t) scenario true states. All of the ozone mixing ratios are listed for 15:00 LT
during the final day of the prediction and monitoring period.

Assumed k(t) Alternative Alternative Emission Alternative Alternative
Scenario Emission Scenario True State – Posteriori Posteriori

Scenario Standard Emission Prediction Prediction
True State Scenario True – Standard True – Alternative

(ppbv) State (ppbv) State (ppbv) True State (ppbv)

Constant 92.5 2.8 3.5 0.7
Sine Wave 97.6 7.9 8.3 0.5
Saw-Tooth 100.3 10.6 9.3 −1.4
Offset −1 93.8 4.1 4.2 0.1
Offset −2 98.9 9.0 8.8 −0.2
Offset +1 86.2 −3.5 −4.9 −1.4
Offset +2 83.5 −6.2 −8.6 −2.4
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Fig. 1. The various different profiles of the temporal variability emission factor, k(t), used in the
analysis of the emission solution sensitivity to diurnal emission variability. The red dashed and
the solid black lines indicate the alternative and standard emissions variabilities, respectively.
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Fig. 1. The various different profiles of the temporal variability emission factor, k(t), used in the
analysis of the emission solution sensitivity to diurnal emission variability. The red dashed and
the solid black lines indicate the alternative and standard emissions variabilities, respectively.
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Fig. 2. A schematic showing how both the a priori and posteriori emissions relate to the true
emissions of NO, and the modeled peak afternoon ozone that results from these emission
variabilities. Note that the same emission variability is used for all of the anthropogenic chemical
species emitted in the model. The a priori and posteriori emissions are scaled relative to the
true emissions and these differences can be characterized as being due to different emission
scaling factors (i.e., xNO) for the a priori, posteriori and true emissions. The black solid, green
dashed and red dashed lines show the truth, a posteriori, and a priori emissions, respectively.

Fig. 3. A schematic showing an example of how the ozone true state (qO3
(x,t)) is sampled

and is combined with the noise to generate the pseudo observations y. The black solid line
indicates the truth and the blue diamonds indicate the pseudo observations.

49
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emissions of NO, and the modeled peak afternoon ozone that results from these emission
variabilities. Note that the same emission variability is used for all of the anthropogenic chemical
species emitted in the model. The a priori and posteriori emissions are scaled relative to the
true emissions and these differences can be characterized as being due to different emission
scaling factors (i.e., xNO) for the a priori, posteriori and true emissions. The black solid, green
dashed and red dashed lines show the truth, a posteriori, and a priori emissions, respectively.
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and is combined with the noise to generate the pseudo observations y. The black solid line
indicates the truth and the blue diamonds indicate the pseudo observations.
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Fig. 4. True and posteriori ozone mixing ratios during the prediction and monitoring period
resulting from the 4-D-variational data assimilation, i.e., qO3

(x̂,τ3) and qO3
(x,τ3), respectively.

The posteriori ozone prediction results directly from the optimization of emission scaling fac-
tors to yield x̂. E represents the posteriori ozone prediction error at 15:00 LT, i.e., qO3

(x̂,tµ) –
qO3

(x,tµ). The solid black and green dashed lines indicate the truth and a posteriori, respec-
tively.

19342



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. A representation of the ozone prototype forecasting framework and the 4D-variational
data assimilation results for scenario OCN with β=0.1. The observation period covers the first
48 hour period of the assimilation during which time pseudo observations are made (at a fre-
quency of every 3 hours in this case) and are used within the assimilation. The observations
are used to constrain the emissions of ozone precursors, which in turn allows the forecasting
model to produce the posteriori ozone prediction. During the prediction and monitoring period
the model true state now plays the monitoring role allowing comparisons to be made to the
ozone forecast. The posteriori ozone prediction represents the forecast for ozone concentra-
tions one day in the future. E represents the posteriori prediction model error and G represents
the a priori and intitial guess prediction error. The black solid line, red solid line, green dahsed
line, and blue diamonds represent the truth, a priori, a posteriori, and pseudo observations,
respectively.
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Fig. 5. A representation of the ozone prototype forecasting framework and the 4-D-variational
data assimilation results for scenario OCN with β=0.1. The observation period covers the first
48 h period of the assimilation during which time pseudo observations are made (at a frequency
of every 3 h in this case) and are used within the assimilation. The observations are used to
constrain the emissions of ozone precursors, which in turn allows the forecasting model to
produce the posteriori ozone prediction. During the prediction and monitoring period the model
true state now plays the monitoring role allowing comparisons to be made to the ozone forecast.
The posteriori ozone prediction represents the forecast for ozone concentrations one day in the
future. E represents the posteriori prediction model error and G represents the a priori and
intitial guess prediction error. The black solid line, red solid line, green dahsed line, and blue
diamonds represent the truth, a priori, a posteriori, and pseudo observations, respectively.

19343

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. These plots show the columns of the Jacobian matrix, K, that correspond to the per-
turbations of the three observed species in scenario OCN, i.e., ozone (left), CO (middle), and
NO2 (right). This Jacobian is for the NO emission scenario where xNO is equal to 1.25. The
shaded area represents observations made during the night. Note that since NO2 observations
made using visible remote sensing instruments that observations can only be made during the
daytime, so there is no need to include a row in the Jacobian corresponding to night time NO2

observations. The blue, green, and red solid lines represent qZ(x,t1)/∂xNO, qZ(x,t1)/∂xNO,
and qZ(x,t1)/∂xNO, respectively.
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Fig. 6. These plots show the columns of the Jacobian matrix, K, that correspond to the
perturbations of the three observed species in scenario OCN, i.e., ozone (left), CO (middle),
and NO2 (right). This Jacobian is for the NO emission scenario where xNO is equal to 1.25. The
shaded area represents observations made during the night. Note that since NO2 observations
made using visible remote sensing instruments that observations can only be made during the
daytime, so there is no need to include a row in the Jacobian corresponding to night time NO2
observations. The blue, green, and red solid lines represent ∂qZ (x,t)/∂xNO, ∂qZ (x,t)/∂xNO,
and qZ (x,t)/∂xNO, respectively.
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Fig. 7. Ozone posteriori prediction errors across the complete range of parameter space for xNO
(0.5–2.5) on the x-axis and β (0.1–5) along the y-axis with each panel presenting the results
from the three observing scenarios CN, OCN and HCN. The coloured contours represent the
posteriori prediction error in units of ppbv. The green and red colors indicate low and high levels
of posteriori ozone prediction error, respectively.
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Fig. 8. xVOC posteriori errors across the complete range of parameter space for xNO (0.5–
2.5) on the x-axis and β (0.1–5) along the y-axis with each panel presenting the results from
the three observing scenarios A–C. The coloured contours represent the posteriori error. To
allow comparison of the error in xVOC to the true state we note that the true state is defined
as xVOC = 6.5. The light blue and green colors indicate low and high posteriori error on xVOC,
respectively.
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Fig. 9. xNO posteriori errors across the complete range of parameter space for xNO (0.5–2.5)
on the x-axis and β (0.1–5) along the y-axis with each panel presenting the results from the
three observing scenarios CN, OCN and HCN. The coloured contours represent the posteriori
error. To allow comparison of the error in xNO to the true state we note that the true state is
defined as the x axis value. The light blue and green colors indicate low and high posteriori
error on xNO, respectively.
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Fig. 10. The posteriori ozone prediction ozone prediction error for an observing scenario using
HCHO, ozone, CO and NO2 observations across the 9 xNO emission scenarios (xNO =0.5–2.5)
and full range of β. The green and red colors indicate low and high levels of posteriori ozone
prediction error, respectively.
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Fig. 11. The difference between the scenario HCN and OCN posteriori ozone prediction error
for a range of assumed HCHO observing error scenarios. In all of the previous analyses and
results β has been identical for all observed species, but in this sensitivity analysis we scale β
for HCHO independently from the other observed species. From left to right HCHO observing
errors are assumed to be 50 %, 100 %, and 150 % of the observing error for the other species.
Thus the right hand panel indicates a scenario with HCHO observations to be of poorer quality
relative to the other species, and represents the difference in ozone prediction error between
the right and middle panels of Fig. 7, and the left panel indicates a rather optimistic case with
assumed HCHO observation errors to be less than the other observed species errors. The
brown and purple contour colors indicate the negative and positive differences between the
scenario HCN and OCN posteriori ozone prediction error, respectively.

19349

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 12. The diagonal of the averaging kernel for xVOC on the lower row and xNO on the upper
row. Each column represents a different observing scenario (CN, OCN, and HCN). The x-axis
denotes the varying value of xNO and the y-axis shows β (0.1–5). The contours represent the
varying magnitude of the diagonal of the averaging kernel matrix from 0 to 1. The purple and
light blue contour colors indicate high and low values of the diagonal of the averaging kernel
matrix, respectively.
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Fig. 13. The degrees of freedom of signal for the parameter retrieval from the thre observing
scenarios (CN, OCN, and HCN). The x-axis indicates varying xNO and the y-axis shows β (0.1–
5.0). The contours represent the magnitude of the degrees of freedom of signal. The green and
brown colors represent high and low values of the degrees of freedom of signal, respectively.
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Fig. 14. The absolute increase in posteriori ozone prediction error between scenario OCN with
β=0.25 and the same scenario with observations removed form specific times over the course
of 2 days (perturbed case), e.g., hour 15 on the second day indicates that no observations
were included in the analytical model calculation of posteriori ozone prediction error for the
perturbed case from 15:00 LT on the second day. The green and black colors indicate low and
high values, respectively.
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Fig. 15. The posteriori ozone prediction error for a variety of observation frequency scenarios
ranging from an observing frequency of 1 h to once per day. These were calculated for scenario
OCN with β = 0.25. The green and red colors indicate low and high levels of posteriori ozone
prediction error, respectively.
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Fig. 16. Weekly averaged later summer and early fall ozone, CO, and NO2 variability for the
years 2005 through 2008. Data from the months July, August and September are included in
the analysis. These results show persistent day to day variability for these trace gases related
to the specific day of the week. The plots on the left, center, and right show the ozone, CO, and
NO2 mixing ratios, respectively.
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Fig. 17. The ozone posteriori ozone prediction error across the full range of 9 xNO emission
scenarios (xNO = 0.5–2.5) and full range of β for the scenario where VOC emission uncertain-
ties are represented by ethane emission uncertainties rather than ethene emission uncertain-
ties. The green and red colors indicate low and high levels of posteriori ozone prediction error,
respectively.
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