Atmos. Chem. Phys. Discuss., 11, 17699-17757, 2011
www.atmos-chem-phys-discuss.net/11/17699/2011/
doi:10.5194/acpd-11-17699-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impact of lightning-NO on Eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model
D. J. Allen1, K. E. Pickering2, R. W. Pinder3, B. H. Henderson4, K. W. Appel3, and A. Prados5
1Department of Atmospheric and Oceanic Science, Univ. of Maryland, College Park, MD, USA
2Atmospheric Chemistry and Dynamics Branch, Code 613.3 NASA-Goddard, Greenbelt, MD, USA
3Atmospheric Modeling and Analysis Division, US EPA, Research Triangle Park, NC, USA
4University of North Carolina Chapel Hill, NC, USA
5Joint Center for Earth Sciences Technology (JCET), University of Maryland Baltimore County, Baltimore, MD, USA

Abstract. A lightning-nitrogen oxide (NO) algorithm is developed for the regional Community Multiscale Air Quality Model (CMAQ) and used to evaluate the impact of lightning-NO emissions (LNOx) on tropospheric photochemistry over the Eastern United States during the summer of 2006. The scheme assumes flash rates are proportional to the model convective precipitation rate but then adjusts the flash rates locally to match monthly average observations.

Over the Eastern United States, LNOx is responsible for 20–25 % of the tropospheric nitrogen dioxide (NO2) column. This additional NO2 reduces the low-bias of simulated NO2 columns with respect to satellite-retrieved Dutch Ozone Monitoring Instrument NO2 (DOMINO) columns from 41 to 14 %. It also adds 10–20 ppbv to upper tropospheric ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to surface ozone is 1–2 ppbv less on poor air quality days. Biases between modeled and satellite-retrieved tropospheric NO2 columns vary greatly between urban and rural locations. In general, CMAQ overestimates columns at urban locations and underestimates columns at rural locations. These biases are consistent with in situ measurements that also indicate that CMAQ has too much NO2 in urban regions and not enough in rural regions. However, closer analysis suggests that most of the differences between modeled and satellite-retrieved urban to rural ratios are likely a consequence of the horizontal and vertical smoothing inherent in columns retrieved by the Ozone Monitoring Instrument (OMI).

Within CMAQ, LNOx increases wet deposition of nitrate by 50 % and total deposition of nitrogen by 11 %. This additional deposition reduces the magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero.

In order to obtain an upper bound on the contribution of uncertainties in chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A) field campaign (summer 2004). After adjusting for possible interferences in NO2 measurements and averaging over the entire campaign, these updates reduced 7–9 km biases from 32 to 17 % and 9–12 km biases from 57 to 46 %. While these changes lead to better agreement, a considerable NO2 low-bias remains in the uppermost troposphere.


Citation: Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.: Impact of lightning-NO on Eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model, Atmos. Chem. Phys. Discuss., 11, 17699-17757, doi:10.5194/acpd-11-17699-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share