Atmos. Chem. Phys. Discuss., 11, 16207-16244, 2011
www.atmos-chem-phys-discuss.net/11/16207/2011/
doi:10.5194/acpd-11-16207-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Regional impacts of ultrafine particle emissions from the surface of the Great Lakes
S. H. Chung1, B. M. Basarab2, and T. M. VanReken1
1Laboratory for Atmospheric Research, Department of Civil & Environmental Engineering, Washington State University, Pullman, Washington, USA
2Department of Physics, Middlebury College, Middlebury, Vermont, USA

Abstract. Quantifying the impacts of aerosols on climate requires a detailed knowledge of both the anthropogenic and the natural contributions to the aerosol population. Recent work has suggested a previously unrecognized natural source of ultrafine particles resulting from breaking waves at the surface of large freshwater lakes. This work is the first modeling study to investigate the potential for this newly discovered source to affect the aerosol number concentrations on regional scales. Using the WRF-Chem modeling framework, the impacts of wind-driven aerosol production from the surface of the Great Lakes were studied for a July 2004 test case. Simulations were performed for a base case with no lake surface emissions, a case with lake surface emissions included, and a default case wherein large freshwater lakes emit marine particles as if they were oceans. Results indicate that the lake surface emissions can enhance the surface level aerosol number concentration by ∼20 % over the remote northern Great Lakes and by ∼5 % over other parts of the Great Lakes. These results were highly sensitive the nucleation parameterization within WRF-Chem; when the nucleation process was deactivated, surface-layer enhancements from the lake emissions increased to as much as 200 %. The results reported here have significant uncertainties associated with the lake emission parameterization and the way ultrafine particles are modeled within WRF-Chem. Nevertheless, the magnitude of the impacts found in this study suggest that further study of this phenomena is merited.

Citation: Chung, S. H., Basarab, B. M., and VanReken, T. M.: Regional impacts of ultrafine particle emissions from the surface of the Great Lakes, Atmos. Chem. Phys. Discuss., 11, 16207-16244, doi:10.5194/acpd-11-16207-2011, 2011.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share