Atmos. Chem. Phys. Discuss., 10, 6279-6300, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Brown carbon in tar balls from smoldering biomass combustion
R. K. Chakrabarty1, H. Moosmüller1, L.-W. A. Chen1, K. Lewis2, W. P. Arnott2, C. Mazzolen3,4, M. Dubey4, C. E. Wold5, W. M. Hao5, and S. M. Kreidenweis6
1Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
2Department of Physics, University of Nevada, Reno, NV 89557, USA
3Department of Physics, Michigan Technological University, MI 49931, USA
4Geochemistry and Climate Focus Team, Los Alamos National Laboratory, NM 87547, USA
5Fire Sciences Laboratory, USDA Forest Service, Missoula, MT 59808, USA
6Department of Atmospheric Sciences, Colorado State University, CO 80523, USA

Abstract. We report the direct observation of large-scale production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements indicate that brown carbon is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional organic carbon (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for UV absorption by brown carbon leads to a significant increase in aerosol radiative forcing efficiency and increased atmospheric warming. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

Citation: Chakrabarty, R. K., Moosmüller, H., Chen, L.-W. A., Lewis, K., Arnott, W. P., Mazzolen, C., Dubey, M., Wold, C. E., Hao, W. M., and Kreidenweis, S. M.: Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys. Discuss., 10, 6279-6300, doi:10.5194/acpd-10-6279-2010, 2010.
Search ACPD
Discussion Paper
    Final Revised Paper