Atmos. Chem. Phys. Discuss., 10, 4543-4592, 2010
www.atmos-chem-phys-discuss.net/10/4543/2010/
doi:10.5194/acpd-10-4543-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing
S. E. Bauer1,2, S. Menon3, D. Koch1,2, T. C. Bond4, and K. Tsigaridis1
1NASA Goddard Institute for Space Studies, New York, NY, USA
2The Earth Institute, Columbia University, New York, NY, USA
3Lawrence Berkeley National Laboratory, Berkeley, CA, USA
4University of Illinois, Urbana-Champaign, IL, USA

Abstract. Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing.

Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.


Citation: Bauer, S. E., Menon, S., Koch, D., Bond, T. C., and Tsigaridis, K.: A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing, Atmos. Chem. Phys. Discuss., 10, 4543-4592, doi:10.5194/acpd-10-4543-2010, 2010.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share