Atmos. Chem. Phys. Discuss., 10, 31083-31121, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
SOA from limonene: role of NO3 in its generation and degradation
J. L. Fry1,*, A. Kiendler-Scharr2, A. W. Rollins1, T. Brauers2, S. S. Brown3, H.-P. Dorn2, W. P. Dubé3, H. Fuchs3,**, A. Mensah2, F. Rohrer2, R. Tillmann2, A. Wahner2, P. J. Wooldridge1, and R. C. Cohen1
1Department of Chemistry, University of California, Berkeley, CA, USA
2ICG-2: Troposphäre, Forschungszentrum Jülich, 52425 Jülich, Germany
3Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
*now at: Chemistry Department, Reed College, Portland, OR, USA
**now at: ICG-2: Troposphäre, Forschungszentrum Jülich, 52425 Jülich, Germany

Abstract. The formation of organic nitrates and secondary organic aerosol (SOA) were monitored during the NO3 + limonene reaction in the atmosphere simulation chamber SAPHIR at Research Center Jülich. The 24-h run began in a purged, dry, particle-free chamber and comprised two injections of limonene and oxidants, such that the first experiment measured SOA yield in the absence of seed aerosol, and the second experiment yields in the presence of 10 μg m−3 seed organic aerosol. After each injection, two separate increases in aerosol mass were observed, corresponding to sequential oxidation of the two limonene double bonds. Analysis of the measured NO3, limonene, product nitrate concentrations, and aerosol properties provides mechanistic insight and constrains rate constants, branching ratios and vapor pressures of the products. The organic nitrate yield from NO3 + limonene is ≈30%. The SOA mass yield was observed to be 25–40%. The first injection is reproduced by a kinetic model. PMF analysis of the aerosol composition suggests that much of the aerosol mass results from combined oxidation by both O3 and NO3, e.g., oxidation of NO3 + limonene products by O3. Further, later aerosol nitrate mass seems to derive from heterogeneous uptake of NO3 onto unreacted aerosol alkene.

Citation: Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Brauers, T., Brown, S. S., Dorn, H.-P., Dubé, W. P., Fuchs, H., Mensah, A., Rohrer, F., Tillmann, R., Wahner, A., Wooldridge, P. J., and Cohen, R. C.: SOA from limonene: role of NO3 in its generation and degradation, Atmos. Chem. Phys. Discuss., 10, 31083-31121, doi:10.5194/acpd-10-31083-2010, 2010.
Search ACPD
Discussion Paper
    Final Revised Paper