Atmos. Chem. Phys. Discuss., 10, 30651-30689, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Remarkable dynamics of nanoparticles in the urban atmosphere
M. Dall'Osto1,*, A. Thorpe1, D. C. S. Beddows1, R. M. Harrison1, J. F. Barlow2, T. Dunbar2, P. I. Williams3, and H. Coe3
1National Centre for Atmospheric Science Division of Environmental Health and Risk Management School of Geography, Earth and Environmental Sciences University of Birmingham, Edgbaston, Birmingham, UK
2Department of Meteorology The University of Reading, Earley Gate, P.O. Box 243, Reading Berkshire, RG6, 6BB, UK
3National Centre for Atmospheric Science School of Earth, Atmospheric and Environmental Sciences The University of Manchester, Williamson Building, Oxford Road Manchester M13 9PL, UK
*now at: Institute of Environmental Assessment and Water Research, Spanish Research Council (IDEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain

Abstract. Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.

Citation: Dall'Osto, M., Thorpe, A., Beddows, D. C. S., Harrison, R. M., Barlow, J. F., Dunbar, T., Williams, P. I., and Coe, H.: Remarkable dynamics of nanoparticles in the urban atmosphere, Atmos. Chem. Phys. Discuss., 10, 30651-30689, doi:10.5194/acpd-10-30651-2010, 2010.
Search ACPD
Discussion Paper
    Final Revised Paper