Atmos. Chem. Phys. Discuss., 10, 30347-30379, 2010
www.atmos-chem-phys-discuss.net/10/30347/2010/
doi:10.5194/acpd-10-30347-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impact of model grid spacing on regional- and urban-scale air quality predictions of organic aerosol
C. A. Stroud1, P. A. Makar1, M. D. Moran1, W. Gong1, S. Gong1, J. Zhang1, K. Hayden1, C. Mihele1, J. R. Brook1, J. G. Abbatt2, and J. P. D. Slowik2
1Air Quality Research Division, Environment Canada, Toronto, Canada
2Department of Chemistry, University of Toronto, Toronto, Canada

Abstract. Regional-scale chemical transport model predictions of urban organic aerosol to date tend to be biased low relative to observations, a limitation with important implications for applying such models to human exposure health studies. We used a nested version of Environment Canada's AURAMS model (42-to-15-to-2.5 km nested grid spacing) to predict organic aerosol concentrations for a temporal and spatial domain corresponding to the Border Air Quality and Meteorology Study (BAQS-Met), an air-quality field study that took place in the southern Great Lakes region in the summer of 2007. The use of three different horizontal grid spacings allowed the influence of this parameter to be examined. A domain-wide average for the 2.5 km domain and a matching 15 km subdomain yielded very similar organic aerosol averages (4.8 vs. 4.3 μg m−3, respectively). On regional scales, secondary organic aerosol dominated the organic aerosol composition and was adequately resolved by the 15 km model simulation. However, the shape of the organic aerosol concentration histogram for the Windsor urban station improved for the 2.5 km simulation relative to those from the 42 and 15 km simulations. The model histograms for the Bear Creek and Harrow rural stations were also improved in the high concentration "tail" region. As well the highest-resolution model results captured the midday 4 July organic-aerosol plume at Bear Creek with very good temporal correlation. These results suggest that accurate simulation of urban and large industrial plumes in the Great Lakes region requires the use of a high-resolution model in order to represent urban primary organic aerosol emissions, urban VOC emissions, and the secondary organic aerosol production rates properly. The positive feedback between the secondary organic aerosol production rate and existing organic mass concentration is also represented more accurately with the highest-resolution model. Not being able to capture these finer-scale features may partly explain the consistent negative bias reported in the literature when urban-scale organic aerosol evaluations are made using coarser-scale chemical transport models.

Citation: Stroud, C. A., Makar, P. A., Moran, M. D., Gong, W., Gong, S., Zhang, J., Hayden, K., Mihele, C., Brook, J. R., Abbatt, J. G., and Slowik, J. P. D.: Impact of model grid spacing on regional- and urban-scale air quality predictions of organic aerosol, Atmos. Chem. Phys. Discuss., 10, 30347-30379, doi:10.5194/acpd-10-30347-2010, 2010.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share