Atmos. Chem. Phys. Discuss., 10, 29113-29152, 2010
www.atmos-chem-phys-discuss.net/10/29113/2010/
doi:10.5194/acpd-10-29113-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Space-based evaluation of interactions between pollution plumes and low-level Arctic clouds during the spring and summer of 2008
K. Tietze1,†, J. Riedi2, A. Stohl3, and T. J. Garrett1
1Univ. of Utah, Dept. of Atmospheric Sciences, Utah, USA
2Laboratoire d'Optique Atmosphérique, Université de Lille1/CNRS, France
3Norwegian Institute for Air Research, Kjeller, Norway
deceased

Abstract. This study explores the indirect effects of anthropogenic and biomass burning aerosols on Arctic clouds by co-locating a combination of MODIS and POLDER cloud products with output from the FLEXPART tracer transport model. During the activities of the International Polar Year for the Spring and Summer of 2008, we find a high sensitivity of Arctic cloud radiative properties to both anthropogenic and biomass burning pollution plumes, particularly at air temperatures near freezing or potential temperatures near 286 K. However, the sensitivity is much lower at both colder and warmer temperatures, likely due increases in the wet scavenging of cloud condensation nuclei: the pollution plumes remain but the component that influences clouds has been removed along transport pathways. The analysis shows that, independent of temperature, cloud optical depth is approximately four times more sensitive to changes in pollution levels than is cloud effective radius. This suggests that some form of feedback mechanism amplifies the radiative response of Arctic clouds to pollution through changes in cloud liquid water path.

Citation: Tietze, K., Riedi, J., Stohl, A., and Garrett, T. J.: Space-based evaluation of interactions between pollution plumes and low-level Arctic clouds during the spring and summer of 2008, Atmos. Chem. Phys. Discuss., 10, 29113-29152, doi:10.5194/acpd-10-29113-2010, 2010.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share