Atmos. Chem. Phys. Discuss., 10, 26551-26606, 2010
www.atmos-chem-phys-discuss.net/10/26551/2010/
doi:10.5194/acpd-10-26551-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS
W. R. Sessions1,*, H. E. Fuelberg1, R. A. Kahn2, and D. M. Winker3
1Department of Meteorology, Florida State University, Tallahassee, Florida, USA
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
3NASA Goddard Space Flight Center, Hampton Virginia, USA
*now at: Naval Research Laboratory, Monterey, California, USA

Abstract. The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia.

One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and the local atmospheric stability. This study compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3–5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors.

Results show that the FLAMBE pre-processor produces more realistic injection heights than does prep_chem_sources. The plume rise model using FLAMBE provides the best agreement with satellite-observed injection heights. Conversely, when the planetary boundary layer or the 3–5 km AGL layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These differences are especially pronounced in areas of strong vertical wind shear and when the integration period is long.


Citation: Sessions, W. R., Fuelberg, H. E., Kahn, R. A., and Winker, D. M.: An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS, Atmos. Chem. Phys. Discuss., 10, 26551-26606, doi:10.5194/acpd-10-26551-2010, 2010.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share