Atmos. Chem. Phys. Discuss., 10, 26117-26155, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Spatial structure and dispersion of the 16/17 April 2010 volcanic ash cloud over Germany
S. Emeis1, W. Junkermann1, K. Schäfer1, R. Forkel1, P. Suppan1, H. Flentje2, S. Gilge2, W. Fricke2, M. Wiegner3, V. Freudenthaler3, S. Groß3, L. Ries4, F. Meinhardt4, C. Münkel5, and F. Obleitner6
1Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
2German Weather Service, Offenbach and Hohenpeißenberg, Germany
3Meteorological Institute, Ludwig-Maximilians University, Munich, Germany
4Federal Environmental Agency, Germany
5Vaisala GmbH, Hamburg, Germany
6Institute for Meteorology and Geophysics, University of Innsbruck, Austria

Abstract. The spatial structure and the progression speed of the first ash layer from the Icelandic Eyjafjallajökull volcano which reached Germany on 16/17 April is investigated from remote sensing data and with numerical simulations. The ceilometer network of the German Weather Service was able to follow the progression of the ash layer over the whole of Germany. This first ash layer turned out to be a rather shallow layer of only several hundreds of metres thickness which was oriented slantwise in the middle troposphere and which was brought downward by large-scale sinking motion over Southern Germany and the Alps. Special Raman lidar measurements, trajectory analyses and in-situ observations from mountain observatories helped to confirm the volcanic origin of the detected aerosol layer. Ultralight aircraft measurements permitted the detection of the arrival of a second major flush of volcanic material in Southern Germany. Numerical simulations with the Eulerian meso-scale model MCCM were able to reproduce the temporal and spatial structure of the ash layer. Comparisons with the ceilometer network data on 17 April and with the ultralight aircraft data on 19 April were satisfying. This is the first example of a model validation study from this ceilometer network data.

Citation: Emeis, S., Junkermann, W., Schäfer, K., Forkel, R., Suppan, P., Flentje, H., Gilge, S., Fricke, W., Wiegner, M., Freudenthaler, V., Groß, S., Ries, L., Meinhardt, F., Münkel, C., and Obleitner, F.: Spatial structure and dispersion of the 16/17 April 2010 volcanic ash cloud over Germany, Atmos. Chem. Phys. Discuss., 10, 26117-26155, doi:10.5194/acpd-10-26117-2010, 2010.
Search ACPD
Discussion Paper
    Final Revised Paper