Atmos. Chem. Phys. Discuss., 10, 24651-24698, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression
H. Simon1, P. V. Bhave1, J. L. Swall1, N. H. Frank2, and W. C. Malm3
1US EPA, National Exposure Research Laboratory, Atmospheric Modeling and Analysis Division, Research Triangle Park, NC, USA
2US EPA, Office of Air Quality Planning and Standards, Research Triangle Park, NC, USA
3National Park Service, Colorado State University/Cooperative Institute for Research in the Atmosphere, Fort Collins, CO, USA

Abstract. Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network are used to estimate organic mass to organic carbon (OM/OC) ratios across the United States by extending previously published multiple regression techniques. Our new methodology addresses common pitfalls of multiple regression including measurement uncertainty, colinearity of covariates, and dataset selection. As expected, summertime OM/OC ratios are larger than wintertime values across the US with all regional median OM/OC values tightly confined between 1.8 and 1.95. Further, we find that OM/OC ratios during the winter are distinctly larger in the eastern US than in the West (regional medians are 1.58, 1.64, and 1.85 in the great lakes, southeast, and northeast regions, versus 1.29 and 1.32 in the western and central states). We find less spatial variability in long-term averaged OM/OC ratios across the US (90% of our multiyear regressions predicted OM/OC ratios between 1.37 and 1.94) than previous studies (90% of OM/OC estimates from a previous regression study fell between 1.30 and 2.10). We attribute this difference largely to the inclusion of EC as a covariate in previous regression studies. Due to the colinearity of EC and OC, we believe that up to one-quarter of the OM/OC estimates in a previous study are biased low. In addition to estimating OM/OC ratios, our technique reveals trends that may be contrasted with conventional assumptions regarding nitrate, sulfate, and soil across the IMPROVE network. For example, our regressions show pronounced seasonal and spatial variability in both nitrate volatilization and sulfate neutralization and hydration.

Citation: Simon, H., Bhave, P. V., Swall, J. L., Frank, N. H., and Malm, W. C.: Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression, Atmos. Chem. Phys. Discuss., 10, 24651-24698, doi:10.5194/acpd-10-24651-2010, 2010.
Search ACPD
Discussion Paper
Final Revised Paper