Atmos. Chem. Phys. Discuss., 10, 11951-11973, 2010
www.atmos-chem-phys-discuss.net/10/11951/2010/
doi:10.5194/acpd-10-11951-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Estimation of ECHAM5 climate model closure parameters with adaptive MCMC
H. Järvinen1, P. Räisänen1, M. Laine1, J. Tamminen1, A. Ilin2, E. Oja2, A. Solonen3, and H. Haario3
1Finnish Meteorological Institute, Helsinki, Finland
2Aalto University School of Science and Technology, Espoo, Finland
3Lappeenranta University of Technology, Lappeenranta, Finland

Abstract. Climate models contain closure parameters to which the model climate is sensitive. These parameters appear in physical parameterization schemes where some unresolved variables are expressed by predefined parameters rather than being explicitly modeled. Currently, best expert knowledge is used to define the optimal closure parameter values, based on observations, process studies, large eddy simulations, etc. Here, parameter estimation, based on the adaptive Markov chain Monte Carlo (MCMC) method, is applied for estimation of joint posterior probability density of a small number (n=4) of closure parameters appearing in the ECHAM5 climate model. The parameters considered are related to clouds and precipitation and they are sampled by an adaptive random walk process of the MCMC. The parameter probability densities are estimated simultaneously for all parameters, subject to an objective function. Five alternative formulations of the objective function are tested, all related to the net radiative flux at the top of the atmosphere. Conclusions of the closure parameter estimation tests with a low-resolution ECHAM5 climate model indicate that (i) adaptive MCMC is a viable option for parameter estimation in large-scale computational models, and (ii) choice of the objective function is crucial for the identifiability of the parameter distributions.

Citation: Järvinen, H., Räisänen, P., Laine, M., Tamminen, J., Ilin, A., Oja, E., Solonen, A., and Haario, H.: Estimation of ECHAM5 climate model closure parameters with adaptive MCMC, Atmos. Chem. Phys. Discuss., 10, 11951-11973, doi:10.5194/acpd-10-11951-2010, 2010.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share